Skip to main content
Log in

Longitudinal Plasma Motions Generated by Shear Alfvén Waves in Plasma with Thermal Misbalance

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Compressional plasma perturbations may cause thermal misbalance between plasma-heating and -cooling processes. This misbalance significantly affects the dispersion properties of compressional waves providing a feedback between the perturbations and plasmas. It has been shown that Alfvén waves may induce longitudinal (compressional) plasma motions. In the present study, we analyze the effects of thermal misbalance caused by longitudinal plasma motions induced by shear Alfvén waves. We show that thermal misbalance leads to appearance of exponential bulk flows, which themselves modify the Alfvén-induced plasma motions. In the case of sinusoidal Alfvén waves, we show how the amplitude and phase shift of induced longitudinal motions gain dependence on the Alfvén wave frequency while shedding light on its functionality. This feature has been investigated analytically in application to coronal conditions. We also consider the evolution of longitudinal plasma motions induced by the shear sinusoidal Alfvén wave by numerical methods before comparing the results obtained with our presented analytical predictions to justify the model under consideration in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Alfvén, H.: 1942, Existence of electromagnetic-hydrodynamic waves. Nature 150, 405. DOI. ADS.

    Article  ADS  Google Scholar 

  • Antolin, P.: 2020, Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations. Comm. Plasma Phys. Control. Fusion 62, 014016. DOI. ADS.

    Article  ADS  Google Scholar 

  • Banerjee, D., Pérez-Suárez, D., Doyle, J.G.: 2009, Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode. Astron. Astrophys. 501, L15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Belov, S.A., Molevich, N.E., Zavershinskii, D.I.: 2018, Amplification of Alfvén waves due to nonlinear interaction with a fast magnetoacoustic wave in acoustically active conductive media. Tech. Phys. Lett. 44, 199. DOI. ADS.

    Article  ADS  Google Scholar 

  • Belov, S., Molevich, N., Zavershinskii, D.: 2019a, Propagation of nonlinear Alfvén waves in heat-releasing plasma. Phys. Scr. 94, 105605. DOI. ADS.

    Article  ADS  Google Scholar 

  • Belov, S.A., Molevich, N.E., Zavershinskii, D.I.: 2019b, Alfvén wave amplification as a result of parametric quasi-resonant interaction with magnetoacoustic waves in heat-releasing isentropically unstable plasma. Russ. Phys. J. 62, 179. DOI. ADS.

    Article  Google Scholar 

  • Belov, S., Molevich, N., Zavershinskii, D.: 2020, Thermal misbalance influence on the nonlinear shear Alfvén waves under solar atmosphere conditions. Solar Phys. 295, 160. DOI. ADS.

    Article  ADS  Google Scholar 

  • Boris, J.P., Book, D.L.: 1973, Flux-corrected transport. I. Shasta, a fluid transport algorithm that works. J. Comput. Phys. 11, 38. DOI.

    Article  ADS  MATH  Google Scholar 

  • Chin, R., Verwichte, E., Rowlands, G., Nakariakov, V.M.: 2010, Self-organization of magnetoacoustic waves in a thermally unstable environment. Phys. Plasmas 17, 032107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Claes, N., Keppens, R.: 2019, Thermal stability of magnetohydrodynamic modes in homogeneous plasmas. Astron. Astrophys. 624, A96. DOI. ADS.

    Article  ADS  Google Scholar 

  • Craig, I.J.D., Fruit, G.: 2005, Wave energy dissipation by phase mixing in magnetic coronal plasmas. Astron. Astrophys. 440, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Del Zanna, G., Dere, K.P., Young, P.R., Landi, E.: 2021, CHIANTI—an atomic database for emission lines. XVI. Version 10, further extensions. Astrophys. J. 909, 38. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, Chianti - an atomic database for emission lines - I. Wavelengths greater than 50 Å. Astron. Astrophys. Suppl. Ser. 125, 149. DOI.

    Article  ADS  Google Scholar 

  • Duckenfield, T.J., Kolotkov, D.Y., Nakariakov, V.M.: 2021, The effect of the magnetic field on the damping of slow waves in the solar corona. Astron. Astrophys. 646, A155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Farahani, S.V., Hejazi, S.M., Boroomand, M.R.: 2021, Torsional Alfvén wave cascade and shocks evolving in solar jets. Astrophys. J. 906, 70. DOI. ADS.

    Article  ADS  Google Scholar 

  • Field, G.B.: 1965, Thermal instability. Astrophys. J. 142, 531. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Duckenfield, T.J., Nakariakov, V.M.: 2020, Seismological constraints on the solar coronal heating function. Astron. Astrophys. 644, A33. DOI.

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Nakariakov, V.M., Zavershinskii, D.I.: 2019, Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona. Astron. Astrophys. 628, A133. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., De Moortel, I., Hood, A.W.: 2011, Phase mixing of nonlinear visco-resistive Alfvén waves. Astron. Astrophys. 527, A149. DOI. ADS.

    Article  MATH  Google Scholar 

  • Molevich, N.: 2001, Excitation of the opposite acoustic flows in thermodynamically nonequilibrium gaseous media. Tech. Phys. Lett. 27, 900.

    Article  ADS  Google Scholar 

  • Molevich, N.: 2002, Nonstationary self-focusing of sound beams in a vibrationally excited molecular gas. Acoust. Phys. 48, 209.

    Article  ADS  Google Scholar 

  • Molevich, N.E., Oraevskii, A.N.: 1988, Second viscosity in thermodynamically nonequilibrium media. Pis’ma Zh. Eksp. Teor. Fiz. 94, 128. [1988, J. Exp. Theor. Phys. 67, 504].

    Google Scholar 

  • Mozafari Ghoraba, A., Vasheghani Farahani, S.: 2018, Properties of nonlinear torsional waves effective on solar swirling plasma motions. Astrophys. J. 869, 93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Roberts, B., Murawski, K.: 1997, Alfven wave phase mixing as a source of fast magnetosonic waves. Solar Phys. 175, 93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Afanasyev, A.N., Kumar, S., Moon, Y.-J.: 2017, Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves. Astrophys. J. 849, 62. DOI. ADS.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1953, Instability of thermal fields. Astrophys. J. 117, 431. DOI. ADS.

    Article  ADS  Google Scholar 

  • Prasad, A., Srivastava, A.K., Wang, T.J.: 2021, Role of compressive viscosity and thermal conductivity on the damping of slow waves in coronal loops with and without heating-cooling imbalance. Solar Phys. 296, 20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, Cambridge. DOI. ADS.

    Book  Google Scholar 

  • Prokopyszyn, A.P.K., Hood, A.W., De Moortel, I.: 2019, Phase mixing of nonlinear Alfvén waves. Astron. Astrophys. 624, A90. DOI. ADS.

    Article  Google Scholar 

  • Ruderman, M.S., Petrukhin, N.S.: 2018, Phase mixing of Alfvén waves in two-dimensional magnetic plasma configurations with exponentially decreasing density. Astron. Astrophys. 620, A44. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sabri, S., Vasheghani Farahani, S., Ebadi, H., Hosseinpour, M., Fazel, Z.: 2018, Alfvén wave dynamics at the neighbourhood of a 2.5D magnetic null-point. Mon. Not. Roy. Astron. Soc. 479, 4991. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sabri, S., Farahani, S.V., Ebadi, H., Poedts, S.: 2020, How Alfvén waves induce compressive flows in the neighborhood of a 2.5D magnetic null-point. Sci. Rep. 10, 15603. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shestov, S.V., Nakariakov, V.M., Ulyanov, A.S., Reva, A.A., Kuzin, S.V.: 2017, Nonlinear evolution of short-wavelength torsional Alfvén waves. Astrophys. J. 840, 64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Srivastava, A.K., Shetye, J., Murawski, K., Doyle, J.G., Stangalini, M., Scullion, E., Ray, T., Wójcik, D.P., Dwivedi, B.N.: 2017, High-frequency torsional Alfvén waves as an energy source for coronal heating. Sci. Rep. 7, 43147. DOI. ADS.

    Article  ADS  Google Scholar 

  • Srivastava, A.K., Murawski, K., Kuźma, B., Wójcik, D.P., Zaqarashvili, T.V., Stangalini, M., Musielak, Z.E., Doyle, J.G., Kayshap, P., Dwivedi, B.N.: 2018, Confined pseudo-shocks as an energy source for the active solar corona. Nat. Astron. 2, 951. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thurgood, J.O., McLaughlin, J.A.: 2013, Nonlinear Alfvén wave dynamics at a 2D magnetic null point: ponderomotive force. Astron. Astrophys. 555, A86. DOI. ADS.

    Article  ADS  Google Scholar 

  • Toth, G., Odstrcil, D.: 1996, Comparison of some flux corrected transport and variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comput. Phys. 128, 82. DOI.

    Article  ADS  MATH  Google Scholar 

  • Vasheghani Farahani, S., Nakariakov, V.M., Van Doorsselaere, T., Verwichte, E.: 2011, Nonlinear long-wavelength torsional Alfvén waves. Astron. Astrophys. 526, A80. DOI.

    Article  MATH  Google Scholar 

  • Vasheghani Farahani, S., Hejazi, S.M.: 2017, Coronal jet collimation by nonlinear induced flows. Astrophys. J. 844, 148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verwichte, E., Nakariakov, V.M., Longbottom, A.W.: 1999, On the evolution of a nonlinear Alfvén pulse. J. Plasma Phys. 62, 219. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zavershinskii, D.I., Kolotkov, D.Y., Nakariakov, V.M., Molevich, N.E., Ryashchikov, D.S.: 2019, Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance. Phys. Plasmas 26, 082113. DOI.

    Article  ADS  Google Scholar 

  • Zavershinskii, D.I., Molevich, N.E., Riashchikov, D.S., Belov, S.A.: 2020, Nonlinear magnetoacoustic waves in plasma with isentropic thermal instability. Phys. Rev. E 101, 043204. DOI.

    Article  ADS  Google Scholar 

  • Zavershinskiy, D.I., Molevich, N.E.: 2015, Parametrical amplification of Alfvén waves in heat-releasing ionized media with magnetoacoustic instability. Astrophys. Space Sci. 358, 22. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The study was supported in part by the Ministry of Education and Science of Russia by State assignment to educational and research institutions under Project No. FSSS-2020-0014 and No. 0023-2019-0003, and by RFBR, project number 20-32-90018. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA), University of Cambridge (UK) and NASA Goddard Space Flight Center (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Belov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology

Guest Editors: Dmitrii Kolotkov and Bo Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, S., Vasheghani Farahani, S., Molevich, N. et al. Longitudinal Plasma Motions Generated by Shear Alfvén Waves in Plasma with Thermal Misbalance. Sol Phys 296, 98 (2021). https://doi.org/10.1007/s11207-021-01850-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01850-0

Keywords

Navigation