Skip to main content
Log in

Electric Fields and Plasma Processes in the Auroral Downward Current Region, Below, Within, and Above the Acceleration Region

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The downward field-aligned current region plays an active role in magnetosphere-ionosphere coupling processes associated with aurora. A quasi-static electric field structure with a downward parallel electric field forms at altitudes between 800 km and 5000 km, accelerating ionospheric electrons upward, away from the auroral ionosphere. A wealth of related phenomena, including energetic ion conics, electron solitary waves, low-frequency wave activity, and plasma density cavities occur in this region, which also acts as a source region for VLF saucers. Results are presented from sounding rockets and satellites, such as Freja, FAST, Viking, and Cluster, to illustrate the characteristics of the electric fields and related parameters, at altitudes below, within, and above the acceleration region. Special emphasis will be on the high-altitude characteristics and dynamics of quasi-static electric field structures observed by Cluster. These structures, which extend up to altitudes of at least 4–5 Earth radii, appear commonly as monopolar or bipolar electric fields. The former are found to occur at sharp boundaries, such as the polar cap boundary whereas the bipolar fields occur at soft plasma boundaries within the plasma sheet. The temporal evolution of quasi-static electric field structures, as captured by the pearls-on-a-string configuration of the Cluster spacecraft indicates that the formation of the electric field structures and of ionospheric plasma density cavities are closely coupled processes. A related feature of the downward current often seen is a broadening of the current sheet with time, possibly related to the depletion process. Preliminary studies of the coupling of electric fields in the downward current region, show that small-scale structures appear to be decoupled from the ionosphere, similar to what has been found for the upward current region. However, exceptions are also found where small-scale electric fields couple perfectly between the ionosphere and Cluster altitudes. Recent FAST results indicate that the degree of coupling differs between sheet-like and curved structures, and that it is typically partial. The mapping depends on the current-voltage relationship in the downward current region, which is highly non-linear and still unclear, as to its specific form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. Alfvén, C.-G. Fälthammar, Cosmical Electrodynamics, Fundamental Principles (Clarendon Press, Oxford, 1963)

    MATH  Google Scholar 

  • L. Andersson, R.E. Ergun, D. Newman, J.P. McFadden, C.W. Carlson, Y.-J. Su, Characteristics of parallel electric fields in the downward current region. Phys. Plasm. 9, 3600–3609 (2002). doi:10.1063/1.1490134

    Article  ADS  Google Scholar 

  • L. Block, Potential double layers in the ionosphere. Cosmic Electrodyn. 3, 349–376 (1972)

    Google Scholar 

  • P. Carlqvist, R. Boström, J. Geophys. Res. 75, 7140 (1970). doi:10.1029/JA075i034p07140

    Article  ADS  Google Scholar 

  • C.W. Carlson, J.P. McFadden, R.E. Ergun, M. Temerin, W. Peria, F.S. Mozer, D.M. Klumpar, E.G. Shelley, W.K. Peterson, E. Moebius, R. Elphic, R.E. Strangeway, C.A. Cattell, R. Pfaff, FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating. Geophys. Res. Lett. 25, 2017 (1998a). doi:10.1029/98GL00851

    Article  ADS  Google Scholar 

  • C.W. Carlson, J.P. McFadden, R.E. Ergun, M. Temerin, W. Peria, F.S. Mozer, D.M. Klumpar, E.G. Shelly, W.K. Peterson, E. Moebius, R. Elphic, R.J. Strangeway, C. Cattell, R. Pfaff, FAST observations in the downward auroral current region: Energetic upgoing electrons beams, parallel potential drops, and ion heating. Geophys. Res. Lett. 25, 2017 (1998b). doi:10.1029/98GL00851

    Article  ADS  Google Scholar 

  • Y.T. Chiu, M. Schultz, Self-consistent particle and parallel electrostatic field distributions in magnetospheric-ionospheric auroral region. J. Geophys. Res. 83, 629 (1978). doi:10.1029/JA083iA02p00629

    Article  ADS  Google Scholar 

  • Y.T. Chiu, A.L. Newman, J.M. Cornwall, On structures and mapping of auroral electrostatic potentials. J. Geophys. Res. 86, 10029–10037 (1981). doi:10.1029/JA086iA12p10029

    Article  ADS  Google Scholar 

  • R.C. Elphic, J.W. Bonnell, R.J. Strangeway, L. Kepko, R.E. Ergun, J.P. McFadden, C.W. Carlson, W. Peria, C.A. Cattell, D. Klumper, E. Shelley, W. Peterson, E. Moebius, L. Kistler, P. Pfaff, The auroral current circuit and field-aligned currents observed by FAST. Geophys. Res. Lett. 25, 2033–2036 (1998). doi:10.1029/98GL01158

    Article  ADS  Google Scholar 

  • R.E. Ergun, C.W. Carlson, J.P. McFadden, F.S. Mozer, G.T. Delory, W. Peria, C.C. Chaston, M. Temerin, R. Elphic, R.J. Strangeway, R. Pfaff, C.A. Cattell, D. Klumpar, E. Shelly, W. Peterson, E. Moebius, L. Kistler, FAST satellite observations of electric field structures in the auroral zone. Geophys. Res. Lett. 25, 2025–2028 (1998). doi:10.1029/98GL00635

    Article  ADS  Google Scholar 

  • R.E. Ergun, C.W. Carlson, J.P. McFadden, F.S. Mozer, R.J. Strangeway, Parallel electric fields in discrete arcs. Geophys. Res. Lett. 27, 4053–4056 (2000). doi:10.1029/2000GL003819

    Article  ADS  Google Scholar 

  • R.E. Ergun, C.W. Carlson, J.P. McFadden, R.J. Strangeway, M.V. Goldman, D.L. Newman, Electron phase-space holes and the VLF saucer source region. Geophys. Res. Lett. 28, 3805 (2001)

    Article  ADS  Google Scholar 

  • R.E. Ergun, L. Andersson, D. Main, Y.-J. Su, C.W. Carlson, J.P. McFadden, F.S. Mozer, Parallel electric fields in the upward current region of the aurora: Indirect and direct observations. Phys. Plasm. 9(355), 3685–3694 (2002)

    Article  ADS  Google Scholar 

  • S. Figueiredo, G. Marklund, T. Karlsson, T. Johansson, Y. Ebihara, N. Ejiri, M. Ivchenko, P.-A. Lindqvist, H. Nilsson, A. Fazakerley, Temporal and spatial evolution of discrete auroral arcs as seen by Cluster. Ann. Geophys. 23, 2531–2557 (2005)

    ADS  Google Scholar 

  • Freja Special Issue, Freja Investigations of high-latitude plasma processes. J. Geophys. Res. 103, A3 (1998)

    Google Scholar 

  • G. Gustavsson, R. Boström, B. Holback, G. Holmgren, A. Lundgren, K. Stasiewicz, L. Åhlén, F. Mozer, D. Pankow, P. Harvey, P. Berg, R. Ulrich, A. Pedersen, R. Schmidt, A. Butler, A. Fransen, D. Klinge, M. Thomsen, C.-G. Fälthammar, P.-A. Lindqvist, S. Christenson, J. Holtet, B. Lybekk, T. Stein, P. Tanskanen, K. Lappalainen, J. Wygant, The electric field and wave experiment for the Cluster mission. Space Sci. Rev. 79(1–2), 137–156 (1997). doi:10.1023/A:1004975108657

    Article  ADS  Google Scholar 

  • M. Hudson, F.S. Mozer, Electrostatic shocks, double layers, and anomalous resistivity in the magnetosphere. Geophys. Res. Lett. 5, 131–134 (1978). doi:10.1029/GL005i002p00131

    Article  ADS  Google Scholar 

  • B. Hultqvist, Downward ion acceleration at auroral latitudes: Cause of parallel electric field. Ann. Geophys. 20, 1117–1136 (2002)

    ADS  Google Scholar 

  • K.-J. Hwang, K.A. Lynch, C.W. Carlson, J.W. Bonnell, W.J. Peria, Fast Auroral Snapshot observations of perpendicular DC electric field structures in downward auroral current regions: Morphology. J. Geophys. Res. 111, A09205 (2006a). doi:10.1029/2005JA011471

    Article  Google Scholar 

  • K.-J. Hwang, K.A. Lynch, C.W. Carlson, J.W. Bonnell, W.J. Peria, Fast Auroral Snapshot observations of perpendicular DC electric field structures in downward current regions: Implications. J. Geophys. Res. 111, A09206 (2006b). doi:10.1029/2005JA011472

    Article  Google Scholar 

  • J.R. Jasperse, Ion heating, electron acceleration, and the self-consistent E-field in downward auroral current regions. Geophys. Res. Lett. 25, 3485–3488 (1998). doi:10.1029/98GL02666

    Article  ADS  Google Scholar 

  • T. Johansson, S. Figueiredo, T. Karlsson, G. Marklund, A. Fazakerley, S. Buchert, P.-A. Lindqvist, H. Nilsson, Intense high-altitude auroral electric fields – temporal and spatial characteristics. Ann. Geophys. 22, 2485–2495 (2004)

    ADS  Google Scholar 

  • T. Johansson, G. Marklund, T. Karlsson, S. Lileo, P.-A. Lindqvist, A. Marchaudon, H. Nilsson, A. Fazakerley, On the profile of intense high-altitude auroral electric fields at magnetospheric boundaries. Ann. Geophys. 24, 1713–1723 (2006)

    Article  ADS  Google Scholar 

  • T. Johansson, G. Marklund, T. Karlsson, S. Liléo, P.-A. Lindqvist, H. Nilsson, S. Buchert, Scale sizes of intense auroral electric fields observed by Cluster. Ann. Geophys. 25, 2413–2425 (2007)

    ADS  Google Scholar 

  • T. Karlsson, G.T. Marklund, A statistical study of intense low-altitude electric fields observed by Freja. Geophys. Res. Lett. 23, 1005–1008 (1996). doi:10.1029/96GL00773

    Article  ADS  Google Scholar 

  • T. Karlsson, G. Marklund, Simulations of effects of small-scale auroral current closure in the return current region. Phys. Space Plasm. 15, 401–406 (1998)

    Google Scholar 

  • T. Karlsson, N. Brenning, O. Marghitu, G. Marklund, S. Buchert, High-altitude signatures of ionospheric density depletions caused by field-aligned currents, (2007). arXiv:0704.1610v1

  • D.M. Klumpar, R.J. Strangeway, C. Carlson, J.P. McFadden, M.A. Temerin, Latitude and local time distribution of downward directed ion beams in the auroral ionosphere. EOS Trans. AGU, Spring Meet. Suppl. 80 (1999)

  • S. Knight, Parallel electric fields. Planet. Space Sci. 21, 741 (1973). doi:10.1016/0032-0633(73)90093-7

    Article  ADS  Google Scholar 

  • D.J. Knudsen, E.F. Donovan, L.L. Cogger, B. Jackel, W.D. Shaw, Width and structure of mesoscale optical auroral arcs. Geophys. Res. Lett. 28, 705–708 (2001). doi:10.1029/2000GL011969

    Article  ADS  Google Scholar 

  • K.A. Lynch, J.W. Bonnell, C.W. Carlson, W. Peria, Return current region aurora: E-parallel, j(z), particle energization, and broadband ELF wave activity. J. Geophys. Res. 107(A7), 1115 (2002). doi:10.1029/2001JA900134

    Article  Google Scholar 

  • J.E. Maggs, T.N. Davis, Measurements of the thickness of auroral structures. Planet. Space Sci. 216, 205–209 (1968). doi:10.1016/0032-0633(68)90069-X

    Article  ADS  Google Scholar 

  • G.T. Marklund, I. Sandahl, H. Opgenoorth, A study of the dynamics of a discrete auroral Ar. Planet. Space Sci. 30, 179–197 (1982). doi:10.1016/0032-0633(82)90088-5

    Article  ADS  Google Scholar 

  • G.T. Marklund, Auroral arc classification scheme based on the observed arc-associated electric field pattern. Planet. Space Sci. 32, 193–211 (1984). doi:10.1016/0032-0633(84)90154-5

    Article  ADS  Google Scholar 

  • G.T. Marklund, L.G. Blomberg, C.-G. Fälthammar, P.-A. Lindqvist, On intense diverging electric fields associated with black aurora. Geophys. Res. Lett. 21, 1859–1862 (1994). doi:10.1029/94GL00194

    Article  ADS  Google Scholar 

  • G. Marklund, L. Blomberg, C.-G. Fälthammar, P.-A. Lindqvist, L. Eliasson, On the occurrence and characteristics of intense low-altitude electric fields observed by Freja. Ann. Geophys. 13, 704–712 (1995). doi:10.1007/s00585-995-0704-9

    Article  ADS  Google Scholar 

  • G. Marklund, T. Karlsson, J. Clemmons, On low-altitude particle acceleration and intense electric fields and their relation to black aurora. J. Geophys. Res. 102, 17509–17522 (1997)

    Article  ADS  Google Scholar 

  • G.T. Marklund, T. Karlsson, Characteristics of the Auroral particle acceleration in the upward and downward current regions. Phys. Chem. Earth 26, 81–96 (2001)

    Google Scholar 

  • G. Marklund, N. Ivchenko, T. Karlsson, A. Fazakerley, M. Dunlop, P.-A. Lindquist, S. Buchert, C. Owen, M. Taylor, A. Vaivalds, P. Carter, M. André, A. Balogh, Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere. Nature 414, 724–727 (2001). doi:10.1038/414724a Medline

    Article  ADS  Google Scholar 

  • G. Marklund, Det svarta norrskenet. Forskning och Framsteg, January 2004

  • G. Marklund, T. Karlsson, S. Figueiredo, T. Johansson, P.-A. Lindqvist, M. André, S. Buchert, L. Kistler, A. Fazakerley, Characteristics of quasi-static potential structures observed in the auroral return current region by Cluster. Nonlinear Process. Geophys. 11, 709–720 (2004)

    ADS  Google Scholar 

  • G.T. Marklund, T. Karlsson, S. Figueiredo, T. Johansson, P.-A. Lindqvist, M. André, S. Buchert, L.M. Kistler, Dynamics and characteristics of electric-field structures in the auroral return current region observed by Cluster. Phys. Scripta (2006). doi:10.1088/0031-8949/2006/T122/008

    Google Scholar 

  • G. Marklund, T. Johansson, S. Liléo, T. Karlsson, Cluster observations of an auroral potential and associated field-aligned current reconfiguration during thinning of the plasma sheet boundary layer. J. Geophys. Res. 112 (2007). doi:10.1029/2006JA011804

  • F.S. Mozer, C.A. Catell, M.K. Hudson, R.L. Lysak, M. Temerin, R.B. Torbert, Satellite measurements and theories of low-altitude auroral particle acceleration. Space Sci. Rev. 27, 155 (1980). doi:10.1007/BF00212238

    Article  ADS  Google Scholar 

  • F.S. Mozer, C.A. Kletzing, Direct observation of large, quasi-static, parallel electric fields in the auroral acceleration region. Geophys. Res. Lett. 25, 1629 (1998). doi:10.1029/98GL00849

    Article  ADS  Google Scholar 

  • P. Mizera, D. Gorney, J. Fennell, Experimental verification of an S-shaped potential structure. J. Geophys. Res. 87, 1535–1539 (1982). doi:10.1029/JA087iA03p01535

    Article  ADS  Google Scholar 

  • G. Paschmann, S. Haaland, R. Treumann, Auroral Plasma Physics. Space Sciences Series of ISSI (Kluwer, Dordrecht, 2003)

    Google Scholar 

  • Y. Song, R.L. Lysak, Towards a new paradigm: from a quasi-steady description to a dynamical description of the magnetosphere. Space Sci. Rev. 95, 273–292 (2001). doi:10.1023/A:1005288420253

    Article  ADS  Google Scholar 

  • A.V. Streltsov, G.T. Marklund, Divergent electric fields in downward current channels. J. Geophys. Res. 111(A07204) (2006). doi:10.1029/2005JA011196

  • M. Temerin, K. Cerny, W. Lotko, F.S. Mozer, Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett. 48, 1175–1179 (1982). doi:10.1103/PhysRevLett.48.1175

    Article  ADS  Google Scholar 

  • M. Temerin, C.W. Carlson, Current voltage relations in the downward auroral current region. Geophys. Res. Lett. 25, 2365–2368 (1998). doi:10.1029/98GL01865

    Article  ADS  Google Scholar 

  • J. Vedin, K. Rönnmark, Electrostatic potentials in the downward auroral current region. J. Geophs. Res. 110 (2005). doi:10.1029/2005JA011083

  • D.R. Weimer, C.K. Goertz, D. Gurnett, Auroral zone electric fields from DE 1 and DE 2 at magnetic conjunctions. J. Geophys. Res. 90, 7479–7494 (1985). doi:10.1029/JA090iA08p07479

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. T. Marklund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marklund, G.T. Electric Fields and Plasma Processes in the Auroral Downward Current Region, Below, Within, and Above the Acceleration Region. Space Sci Rev 142, 1–21 (2009). https://doi.org/10.1007/s11214-008-9373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-008-9373-9

Keywords

Navigation