Skip to main content
Log in

Magnetic Polarity Transitions and Biospheric Effects

Historical Perspective and Current Developments

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This review addresses possible biospheric effects of geomagnetic polarity transitions. During a transition the magnetic field at the surface of the Earth decreases to about 10% of its current value. If the geomagnetic field is a shield against energetic particles of solar or cosmic origin then biospheric effects can be expected. We review the early speculations on the problem and discuss in more detail its current status. We conclude that no clear picture of a geomagnetic link, a causal relation between secular magnetic field variations and the evolution of life on our planet can be drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. Baumgartner, J. Beer, J. Masarik, G. Wagner, L. Meynadier, H.A. Synal, Geomagnetic modulation of the 36Cl flux in the GRIP Ice Core Greenland. Science 279, 1330–1334 (1998). doi:10.1126/science.279.5355.1330

    Article  ADS  Google Scholar 

  • D.I. Black, Cosmic ray effects and faunal extinctions at geomagnetic field reversals. Earth Planet. Sci. Lett. 3, 225–236 (1967). doi:10.1016/0012-821X(67)90042-8

    Article  ADS  Google Scholar 

  • M. Blanc, R. Kallenbach, N.V. Erkaev, Solar system magnetospheres. Space Sci. Rev. 116, 227–298 (2005). doi:10.1007/s11214-005-1958-y

    Article  ADS  Google Scholar 

  • A. Brack, G. Horneck, C.S. Cockell, A. Bérces, N.K. Belisheva, C. Eiroa, T. Henning, T. Herbst, L. Kaltenegger, A. Léger, R. Liseau, H. Lammer, F. Selsis, C. Beichman, W. Danchi, M. Fridlund, J. Lunine, F. Paresce, A. Penny, A. Quirrenbach, H. Röttgering, J. Schneider, D. Stam, G. Tinetti, G.J. White, Origin and evolution of life on terrestrial planets. Astrobiology 10, 69–76 (2010). doi:10.1089/ast.2009.0374

    Article  ADS  Google Scholar 

  • A.B. Britt, Repair of DNA damage induced by ultraviolet radiation. Plant Physiol. 108, 891–896 (1995)

    Article  Google Scholar 

  • C.S. Cockell, A.R.E. Blaustein, Ecosystems, Evolution, and Ultraviolet Radiation (Springer, Berlin, 2001)

    Google Scholar 

  • T.S. Collett, J. Baron, Biological compasses and the coordinate frame of landmark memories in honeybees. Nature 368, 137–140 (1994). doi:10.1038/368137a0

    Article  ADS  Google Scholar 

  • C. Constable, On rates of occurrence of geomagnetic reversals. Phys. Earth Planet. Int. 118, 181–193 (2000)

    Article  ADS  Google Scholar 

  • C.G. Constable, R.L. Parker, Statistics of the geomagnetic secular variation for the past 5 m.y. J. Geophys. Res. 93, 11569–11578 (1988). doi:10.1029/JB093iB10p11569

    Article  ADS  Google Scholar 

  • I.K. Crain, Possible direct causal relation between geomagnetic reversals and biological extinctions. Geol. Soc. Am. Bull. 82, 2603–2606 (1971)

    Article  Google Scholar 

  • P.J. Crutzen, ISA Isaksen, G.C. Reid, Solar proton events: Stratospheric sources of nitric oxide. Science 189, 457–459 (1975). doi:10.1126/science.189.4201.457

    Article  ADS  Google Scholar 

  • J. Duplissy, M.B. Enghoff, K.L. Aplin, F. Arnold, H. Aufmhoff, M. Avngaard, U. Baltensperger, T. Bondo, R. Bingham, K. Carslaw, J. Curtius, A. David, B. Fastrup, S. Gagné, F. Hahn, R.G. Harrison, B. Kellett, J. Kirkby, M. Kulmala, L. Laakso, A. Laaksonen, E. Lillestol, M. Lockwood, J. Mäkelä, V. Makhmutov, N.D. Marsh, T. Nieminen, A. Onnela, E. Pedersen, J.O.P. Pedersen, J. Polny, U. Reichl, J.H. Seinfeld, M. Sipilä, Y. Stozhkov, F. Stratmann, H. Svensmark, J. Svensmark, R. Veenhof, Y. Viisanen, P.E. Wagner, G. Wehrle, E. Weingartner, H. Wex, M. Wilhelmsson, P.M. Winkler, Results from the CERN pilot CLOUD experiment. Atmos. Chem. Phys. Discuss. 9, 18235–18270 (2009)

    Article  ADS  Google Scholar 

  • K. Fabian, R. Leonhardt, Records of paleomagnetic field variations, in Geomagnetic Variations, ed. by K.H. Glassmeier, H. Soffel, J.W. Negendank (Springer, Berlin, 2009), pp. 65–106

    Chapter  Google Scholar 

  • J. Firor, Cosmic radiation intensity-time variations and their origin. IV. Increases associated with solar flares. Phys. Rev. 94(4), 1017–1028 (1954). doi:10.1103/PhysRev.94.1017

    Article  ADS  Google Scholar 

  • M. Fuller, Geomagnetic field intensity, excursions, reversals and the 41000-yr obliquity signal. Earth Planet. Sci. Lett. 245, 605–615 (2006)

    Article  ADS  Google Scholar 

  • Y. Gallet, A. Genevey, F. Fluteau, Does Earth’s magnetic field secular variation control centennial climate change? Earth Planet. Sci. Lett. 236, 339–347 (2005). doi:10.1016/j.epsl.2005.04.045

    Article  ADS  Google Scholar 

  • F. Garcia-Pichel, R.W. Castenholz, Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Physiol. 27, 395–409 (1991)

    Google Scholar 

  • K.H. Glassmeier, J. Vogt, A. Stadelmann, S. Buchert, Concerning long-term geomagnetic variations and space climatology. Ann. Geophys. 22, 3669–3677 (2004)

    Article  ADS  Google Scholar 

  • K.H. Glassmeier, O. Richter, J. Vogt, P. Möbus, A. Schwalb, The Sun, geomagnetic polarity transitions, and possible biospheric effects: review and illustrating model. Int. J. Astrobiol. 8, 147–159 (2009a). doi:10.1017/S1473550409990073

    Article  Google Scholar 

  • K.H. Glassmeier, H. Soffel, J.W.E. Negendank, Geomagnetic Variations (Springer, Berlin, 2009b)

    Google Scholar 

  • G.A. Glatzmaier, P.H. Roberts, A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–207 (1995). doi:10.1038/377203a0

    Article  ADS  Google Scholar 

  • J. Gröbner, A. Albold, M. Blumthaler, T. Cabot, A. De la Casiniere, J. Lenoble, T. Martin, D. Masserot, M. Müller, R. Philipona, T. Pichler, E. Pougatch, G. Rengarajan, D. Schmucki, G. Seckmeyer, C. Sergent, M.L. Touré, P. Weihs, Variability of spectral solar ultraviolet irradiance in an alpine environment. J. Geophys. Res. 105, 26991–27004 (2000). doi:10.1029/2000JD900395

    Article  ADS  Google Scholar 

  • Y. Guyodo, J.P. Valet, Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature 399, 249–252 (1999). doi:10.1038/20420

    Article  ADS  Google Scholar 

  • D.P. Häder, Effects of solar UV-B radiation on aquatic ecosystems. Adv. Space Res. 26, 2029–2040 (2000)

    Article  Google Scholar 

  • D.P. Häder, Ultraviolet radiation and aquatic microbial ecosystems, in Ecosystems, Evolution, and Ultraviolet Radiation, ed. by C.C. Cockell, A.R. Blaustein (Springer, Berlin, 2001), pp. 150–169

    Google Scholar 

  • S.G.A. Harrison, B.M. Funnell, Relationship of paleomagnetic reversals and micropaleoontology in two late Caenozoic cores from the Pacific ocean. Nature 204, 566–567 (1964)

    Article  ADS  Google Scholar 

  • C.G.A. Harrison, J.M. Prospero, Reversals of the Earth’s magnetic field and climatic changes. Nature 250, 563–565 (1974). doi:10.1038/250563a0

    Article  ADS  Google Scholar 

  • D. Hauglustaine, J. Gerard, Possible composition and climatic changes due to past intense energetic particle precipitation. Ann. Geophys. 8, 87–96 (1990)

    ADS  Google Scholar 

  • J.D. Hays, Faunal extinctions and reversals of the Earth’s magnetic field. Geol. Soc. Am. Bull. 82, 2433–2447 (1971)

    Article  Google Scholar 

  • D.J. Hofmann, J.M. Rosen, Stratospheric condensation nuclei variations may relate to solar activity. Nature 297, 120–124 (1982). doi:10.1038/297120a0

    Article  ADS  Google Scholar 

  • C.H. Jackman, R.D. McPeters, G.J. Labow, E.L. Fleming, C.J. Praderas, J.M. Russell, Northern hemisphere atmospheric effects due to the July 2000 solar proton event. Geophys. Res. Lett. 28, 2883–2886 (2001). doi:10.1029/2001GL013221

    Article  ADS  Google Scholar 

  • D.V. Kent, Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments. Nature 299, 538–539 (1982). doi:10.1038/299538a0

    Article  ADS  Google Scholar 

  • J.W. King, Weather and the Earth’s magnetic field. Nature 247, 131–134 (1974). doi:10.1038/247131a0

    Article  ADS  Google Scholar 

  • J. Kirkby, Cosmic rays and climate. Surv. Geophys. 28, 333–375 (2007). doi:10.1007/s10712-008-9030-6

    Article  ADS  Google Scholar 

  • M. Korte, C.G. Constable, Centennial to millennial geomagnetic secular variation. Geophys. J. Int. 167, 43–52 (2006). doi:10.1111/j.1365-246X.2006.03088.x

    Article  ADS  Google Scholar 

  • H. Lammer, J. Kasting, E. Chassefiere, R. Johnson, Y. Kulikov, F. Tian, Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008). doi:10.1007/s11214-008-9413-5

    Article  ADS  Google Scholar 

  • P.R. Leavitt, B.F. Cumming, J.P. Smol, M. Reasoner, R. Pienitz, D. Hodgson, Climatic control of UV radiation effects on lakes. Limnol. Oceanogr. 48, 2062–2069 (2003)

    Article  Google Scholar 

  • R. Leonhardt, K. Fabian, Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett. 253, 172–195 (2007). doi:10.1016/j.epsl.2006.10.025

    Article  ADS  Google Scholar 

  • R. Lundin, H. Lammer, I. Ribas, Planetary magnetic fields and solar forcing: Implications for atmospheric evolution. Space Sci. Rev. 129, 245–278 (2007). doi:10.1007/s11214-007-9176-4

    Article  ADS  Google Scholar 

  • T.M. Lutz, The magnetic reversal record is not periodic. Nature 317, 404–407 (1985). doi:10.1038/317404a0

    Article  ADS  Google Scholar 

  • S. Madronich, R. McKenzie, L. Björn, M. Caldwell, Changes in biologically active ultraviolet radiation reaching the earth’s surface. UNEP Environmental Effects Panel Report, United Nations, New York, pp. 5–19 (1998)

  • N. Marsh, H. Svensmark, Cosmic rays, clouds, and climate. Space Sci. Rev. 94, 215–230 (2000)

    Article  ADS  Google Scholar 

  • H. Marshall, Ultra-violet and extinction. Am. Nat. 62, 165–187 (1928)

    Article  Google Scholar 

  • W. Marzocchi, F. Mulargia, The periodicity of geomagnetic reversals. Phys. Earth Planet. Int. 73, 222–228 (1992). doi:10.1016/0031-9201(92)90092-A

    Article  ADS  Google Scholar 

  • A. Mazaud, C. Laj, The 15 m.y. geomagnetic reversal periodicity—A quantitative test. Earth Planet. Sci. Lett. 107, 689–696 (1991). doi:10.1016/0012-821X(91)90111-T

    Article  ADS  Google Scholar 

  • B.M. McCormac, J.E. Evans, Consequences of very small planetary magnetic moments. Nature 223, 1255 (1969). doi:10.1038/2231255a0

    Article  ADS  Google Scholar 

  • M.W. McElhinny, Geomagnetic reversals during the Phanerozoic. Science 172, 157–159 (1971). doi:10.1126/science.172.3979.157

    Article  ADS  Google Scholar 

  • L.R. McHargue, D. Donahue, P.E. Damon, C.P. Sonett, D. Biddulph, G. Burr, Geomagnetic modulation of the late Pleistocene cosmic-ray flux as determined by 10 Be from Blake Outer Ridge marine sediments. Nucl. Instrum. Methods Phys. Res. B 172, 555–561 (2000). doi:10.1016/S0168-583X(00)00092-6

    Article  ADS  Google Scholar 

  • S.L. Miller, H.C. Urey, Organic compound synthesis on the primitive Earth. Science 130, 245–251 (1959). doi:10.1126/science.130.3370.245

    Article  ADS  Google Scholar 

  • R. Mittler, E. Tel-Or, Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC7942. Free Radic. Res. Commun. 12, 845–850 (1991)

    Article  Google Scholar 

  • T.E. Moore, J.L. Horwitz, Stellar ablation of planetary atmospheres. Rev. Geophys. 45, 3002 (2007). doi:10.1029/2005RG000194

    Article  ADS  Google Scholar 

  • E.P. Ney, Cosmic radiation and the weather. Nature 183, 451–452 (1959). doi:10.1038/183451a0

    Article  ADS  Google Scholar 

  • P. Olson, H. Amit, Changes in Earth’s dipole. Naturwissenschaften 93, 519–542 (2006)

    Article  ADS  Google Scholar 

  • N.D. Opdyke, B. Glass, J.D. Hays, J. Foster, Paleomagnetic study of Antarctic deep-sea cores. Science 154, 349–351 (1966)

    Article  ADS  Google Scholar 

  • J.R. Pierce, P.J. Adams, Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys. Res. Lett. 36, 9820 (2009). doi:10.1029/2009GL037946

    Article  Google Scholar 

  • R.E. Plotnick, Relationship between biological extinctions and geomagnetic reversals. Geology 8, 578–581 (1980)

    Article  ADS  Google Scholar 

  • G.M. Raisbeck, F. Yiou, D. Bourles, D.V. Kent, Evidence for an increase in cosmogenic Be-10 during a geomagnetic reversal. Nature 315, 315–317 (1985). doi:10.1038/315315a0

    Article  ADS  Google Scholar 

  • G.M. Raisbeck, F. Yiou, O. Cattani, J. Jouzel, 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core. Nature 444, 82–84 (2006). doi:10.1038/nature05266

    Article  ADS  Google Scholar 

  • M.R. Rampino, Possible relationships between changes in global ice volume, geomagnetic excursions, and the eccentricity of the Earth’s orbit. Geology 7, 584–589 (1979). doi:10.1130/0091-7613(1979)7<584:PRBCIG>2.0.CO;2

    Article  ADS  Google Scholar 

  • M.R. Rampino, R.B. Stothers, Geological rhythms and cometary impacts. Science 226, 1427–1431 (1984). doi:10.1126/science.226.4681.1427

    Article  ADS  Google Scholar 

  • D.M. Raup, Magnetic reversals and mass extinctions. Nature 314, 341–343 (1985). doi:10.1038/314341a0

    Article  ADS  Google Scholar 

  • D.M. Raup, J.J. Sepkoski, Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. 81, 801–805 (1984)

    Article  ADS  Google Scholar 

  • G.C. Reid, I.S.A. Isaksen, T.E. Holzer, P.J. Crutzen, Influence of ancient solar-proton events on the evolution of life. Nature 259, 177–179 (1976)

    Article  ADS  Google Scholar 

  • G.C. Reid, S. Solomon, R.R. Garcia, Response of the middle atmosphere to the solar proton events of August–December 1989. Geophys. Res. Lett. 18, 1019–1022 (1991). doi:10.1029/91GL01049

    Article  ADS  Google Scholar 

  • W.O. Roberts, R.H. Olson, Geomagnetic storms and wintertime 300-mb trough development in the North Pacific-North America area. J. Atmos. Sci. 30, 135–140 (1973). doi:10.1175/1520-0469(1973)030<0135:GSAWMT>2.0.CO;2

    Article  ADS  Google Scholar 

  • C.J. Rodger, M.A. Clilverd, T. Ulich, P.T. Verronen, E. Turunen, N.R. Thomson, The atmospheric implications of radiation belt remediation. Ann. Geophys. 24, 2025–2041 (2006)

    Article  ADS  Google Scholar 

  • E.C. Roelof, D.G. Sibeck, Magnetopause shape as a bivariate function of interplanetary magnetic field B z and solar wind dynamic pressure. J. Geophys. Res. 98, 21421 (1993). doi:10.1029/93JA02362

    Article  ADS  Google Scholar 

  • J. Rozema, Y. Maneta, L.O.B. Björn, Response of Plants to UV-B Radiation (Kluwer Academic, Dordrecht, 2002)

    Google Scholar 

  • C. Sagan, Is the early evolution of life related to the development of the Earth’s core? Nature 206, 448 (1965)

    Article  ADS  Google Scholar 

  • T. Sato, K. Niita, Analytical functions to predict cosmic-ray neutron spectra in the atmosphere. Radiat. Res. 166, 544–555 (2006)

    Article  Google Scholar 

  • T. Sato, H. Yasudab, K. Niita, A. Endoa, L. Sihverd, Development of PARMA: PHITS-based analytical radiation model in the atmosphere. Radiat. Res. 170, 244–259 (2008)

    Article  Google Scholar 

  • D.E. Schmitt, H.E. Esch, Magnetic orientation of honeybees in the laboratory. Naturwissenschaften 80, 41–43 (1993). doi:10.1007/BF01139759

    Article  ADS  Google Scholar 

  • M. Schulz, Geomagnetically trapped radiation. Space Sci. Rev. 17, 481–536 (1975). doi:10.1007/BF00718583

    Article  ADS  Google Scholar 

  • R.S. Selesnick, M.D. Looper, R.A. Mewaldt, A theoretical model of the inner proton radiation belt. Space Weather 5, 4003 (2007). doi:10.1029/2006SW000275

    Article  Google Scholar 

  • P. Selkin, L. Tauxe, Long term variations in geomagnetic field intensity. Philos. Trans. R. Soc. 358, 869–1223 (2000)

    Google Scholar 

  • M. Siebert, Auswirkungen der säkularen Änderung des Erdmagnetischen Hauptfeldes auf Form und Lage der Magnetosphäre und die Stärke der erdmagnetischen Aktivität. Abh. Braunschw. Wiss. Ges. 37, 281–309 (1977)

    Google Scholar 

  • J.F. Simpson, Evolutionary pulsations and geomagnetic polarity. Geol. Soc. Am. Bull. 77, 197–204 (1966). doi:10.1130/0016-7606

    Article  Google Scholar 

  • R.P. Sinha, D.P. Häder, Life under solar UV radiation in aquatic organisms. Adv. Space Res. 30, 1547–1556 (2002)

    Article  ADS  Google Scholar 

  • M. Sinnhuber, J.P. Burrows, M.P. Chipperfield, C.H. Jackman, M.B. Kallenrode, K.F. Künzi, M. Quack, A model study of the impact of magnetic field structure on atmospheric composition during solar proton events. Geophys. Res. Lett. 30(15), 150000–1 (2003)

    Article  Google Scholar 

  • G.L. Siscoe, C.K. Chen, The paleomagnetosphere. J. Geophys. Res. 80, 4675–4680 (1975). doi:10.1029/JA080i034p04675

    Article  ADS  Google Scholar 

  • D.F. Smart, M.A. Shea, Fifty years of progress in geomagnetic cutoff rigidity determinations. Adv. Space Res. 44, 1107–1123 (2009). doi:10.1016/j.asr.2009.07.005

    Article  ADS  Google Scholar 

  • D.F. Smart, M.A. Shea, E.O. Flückiger, Magnetospheric models and trajectory computations. Space Sci. Rev. 93, 305–333 (2000)

    Article  ADS  Google Scholar 

  • L. Sorriso-Valvo, F. Stefani, V. Carbone, G. Nigro, F. Lepreti, A. Vecchio, P. Veltri, A statistical analysis of polarity reversals of the geomagnetic field. Phys. Earth Planet. Int. 164, 197–207 (2007). doi:10.1016/j.pepi.2007.07.001

    Article  ADS  Google Scholar 

  • A. Stadelmann, Globale Effekte einer Magnetfeldumkehr: Magnetosphärenstruktur und kosmische Teilchen. Dissertation, Technische Universität Braunschweig (2004)

  • A. Stadelmann, J. Vogt, K.H. Glassmeier, M.B. Kallenrode, G.H. Voigt, Cosmic ray and solar energetic particle flux in paleomagnetospheres. Earth Planets Space 62, 333–345 (2010)

    Article  ADS  Google Scholar 

  • D. Stevenson, Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–11 (2003)

    Article  ADS  Google Scholar 

  • H. Svensmark, Cosmoclimatology: a new theory emerges. Astron. Geophys. 48(1), 18–24 (2007)

    Article  ADS  Google Scholar 

  • H. Svensmark, E. Friis-Christensen, Variation of cosmic ray flux and global cloud coverage—A missing link in solar-climate relationships. J. Atmos. Terr. Phys. 59, 1225–1232 (1997)

    Article  ADS  Google Scholar 

  • J.A. Tarduno, R.D. Cottrell, M.K. Watkeys, D. Bauch, Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature 446, 657–660 (2007)

    Article  ADS  Google Scholar 

  • N. Thouveny, D.L. Bourlès, G. Saracco, J.T. Carcaillet, F. Bassinot, Paleoclimatic context of geomagnetic dipole lows and excursions in the Brunhes, clue for an orbital influence on the geodynamo? Earth Planet. Sci. Lett. 275, 269–284 (2008). doi:10.1016/j.epsl.2008.08.020

    Article  ADS  Google Scholar 

  • F. Tian, J. Kasting, H. Liu, R. Roble, Hydrodynamic planetary thermosphere model: 1. The response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res. 113 (2008). doi:10.1029/2007JE002946

  • A. Tilgner, Kinematic dynamos with precession driven flow in a sphere. Geophys. Astrophys. Fluid Dyn. 101, 1–9 (2007). doi:10.1080/03091920601045324

    Article  MathSciNet  ADS  Google Scholar 

  • A. Toyomaki, T. Yamamoto, Observation of changes in neural activity due to the static magnetic field of an MRI scanner. J. Magn. Res. Imaging 26, 1216–1221 (2007)

    Article  Google Scholar 

  • N.A. Tsyganenko, M.I. Sitnov, Magnetospheric configurations from a high-resolution data-based magnetic field model. J. Geophys. Res. 112, 6225 (2007). doi:10.1029/2007JA012260

    Article  Google Scholar 

  • R.J. Uffen, Influence of the Earth’s core on the origin and evolution of life. Nature 198, 143–144 (1963). doi:10.1038/198143b0

    Article  ADS  Google Scholar 

  • J. Van Allen, L. Frank, Radiation around the Earth to a radial distance of 107,400 km. Nature 183, 430–434 (1959)

    Article  ADS  Google Scholar 

  • J. Vogt, K.H. Glassmeier, On the location of trapped particle populations in quadrupole magnetospheres. J. Geophys. Res. 105, 13063–13072 (2000). doi:10.1029/2000JA900006

    Article  ADS  Google Scholar 

  • J. Vogt, K. Glassmeier, Modelling the paleomagnetosphere: strategy and first results. Adv. Space Res. 28, 863–868 (2001). doi:10.1016/S0273-1177(01)00504-X

    Article  ADS  Google Scholar 

  • J. Vogt, B. Zieger, A. Stadelmann, K.H. Glassmeier, T.I. Gombosi, K.C. Hansen, A.J. Ridley MHD simulations of quadrupolar paleomagnetospheres. J. Geophys. Res. 109, 12221 (2004). doi:10.1029/2003JA010273

    Article  Google Scholar 

  • J. Vogt, B. Zieger, K.H. Glassmeier, A. Stadelmann, M.B. Kallenrode, M. Sinnhuber, H. Winkler, Energetic particles in the paleomagnetosphere: Reduced dipole configurations and quadrupolar contributions. J. Geophys. Res. 112, 6216 (2007). doi:10.1029/2006JA012224

    Article  Google Scholar 

  • J. Vogt, M. Sinnhuber, M.B. Kallenrode, Effects of geomagnetic variations on system Earth, in Geomagnetic Variations, ed. by K.H. Glassmeier, H. Soffel, J.W. Negendank (Springer, Berlin, 2009), pp. 159–208

    Chapter  Google Scholar 

  • G.H. Voigt, A mathematical magnetospheric field model with independent physical parameters. Planet. Space Sci. 29, 1–20 (1981). doi:10.1016/0032-0633(81)90134-3

    Article  ADS  Google Scholar 

  • N.D. Watkins, H.G. Goodell, Geomagnetic polarity change and faunal extinction in the Southern ocean. Science 156, 1083–1085 (1967)

    Article  ADS  Google Scholar 

  • J. Wicht, S. Stellmach, H. Harder, Numerical models of the geodynamo, in Geomagnetic Variations, ed. by K. Glassmeier, H. Soffel, J.W. Negendank (Springer, Berlin, 2009), pp. 107–158

    Chapter  Google Scholar 

  • W. Wiltschko, R. Wiltschko, Magnetic compass of European robins. Science 176, 62–64 (1972)

    Article  ADS  Google Scholar 

  • W. Wiltschko, R. Wiltschko, Magnetic orientation and magnetoreception in birds and other animals. J. Comput. Physiol. 191, 675 (2005)

    Article  Google Scholar 

  • H. Winkler, M. Sinnhuber, J. Notholt, M.B. Kallenrode, F. Steinhilber, J. Vogt, B. Zieger, K.H. Glassmeier, A. Stadelmann, Modeling impacts of geomagnetic field variations on middle atmospheric ozone responses to solar proton events on long timescales. J. Geophys. Res. 113, 2302–2316 (2008). doi:10.1029/2007JD008574

    Article  Google Scholar 

  • M. Winklhofer, The physics of geomagnetic-field transduction in animals. IEEE Trans. Magnet. 45, 5259–5265 (2009). doi:10.1109/TMAG.2009.2017940

    Article  ADS  Google Scholar 

  • H. Worm, A link between geomagnetic reversals and events and glaciations. Earth Planet. Sci. Lett. 147, 55–67 (1997). doi:10.1016/S0012-821X(97)00008-3

    Article  ADS  Google Scholar 

  • C.C. Wu, P. Roberts, A precessionally-driven dynamo in a plane layer. Geophys. Astrophys. Fluid Dyn. 102, 1–19 (2008). doi:10.1080/03091920701450333

    Article  MathSciNet  ADS  Google Scholar 

  • B. Zieger, J. Vogt, K.H. Glassmeier, T.I. Gombosi, Magnetohydrodynamic simulation of an equatorial dipolar paleomagnetosphere. J. Geophys. Res. 109, 7205 (2004). doi:10.1029/2004JA010434

    Article  Google Scholar 

  • B. Zieger, J. Vogt, K.H. Glassmeier, Scaling relations in the paleomagnetosphere derived from MHD simulations. J. Geophys. Res. 111, 6203 (2006). doi:10.1029/2005JA011531

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Glassmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glassmeier, KH., Vogt, J. Magnetic Polarity Transitions and Biospheric Effects. Space Sci Rev 155, 387–410 (2010). https://doi.org/10.1007/s11214-010-9659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-010-9659-6

Keywords

Navigation