Skip to main content
Log in

Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We present the outcome of a mission concept study that designed a small atmospheric entry probe and examined the feasibility and benefit of a future multi-probe mission to Uranus. We call our design the Small Next-generation Atmospheric Probe (SNAP). The primary scientific objective of a multi-probe mission is to reveal spatial variability of atmospheric conditions. This article first highlights that not all measurements must be repeated by multiple probes; some quantities, notably the noble gas abundances and elemental isotopic ratios, are not expected to be variable, and thus need to be performed only by a single large Primary Probe. Our study demonstrates that, by focusing its measurements on spatially variable quantities including atmospheric vapor concentrations, thermal stratification and wind speed, a viable atmospheric probe design is realized with an entry system with 50-cm heatshield diameter and 30-kg atmospheric entry mass.

As a case study, we present a detailed analysis of adding SNAP to a notional Uranus Orbiter with Probe mission, which launches in 2031 and arrives at Uranus in 2043, designed by the NASA-funded Science Definition Team study in 2017. We demonstrate that, with minimal changes to the notional carrier mission, a large Primary Probe and SNAP can be delivered to the winter and summer hemispheres to examine seasonal atmospheric variabilities, and transmit data to the Orbiter, which in turn relays the data to Earth. The additional maneuvers needed to deliver SNAP totals a Delta-V of 84 m/s, and consumes 43 kg of propellant. The addition of SNAP is expected to cost $79.5 million in FY2018 dollars; thus, our study demonstrates that a multi-probe mission can be implemented with a 4% cost increase relative to the $2.0 billion cost estimate of the notional mission designed by NASA’s Ice Giant Flagship Science Definition Team study reported in 2017.

The SNAP design incorporates several technologies that are currently under development at various Technology Readiness Levels (TRL) between TRL = 4 and TRL = 6. In particular, our study recommends targeted technology development in Thermal Protection System materials, advanced batteries, and miniaturized instruments to enable and enhance future small atmospheric probes like SNAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • D.H. Atkinson, The Galileo Jupiter Probe Doppler Wind Experiment. Sol. Syst. Res. 35, 354–375 (2001)

    ADS  Google Scholar 

  • S.K. Atreya, A.-S. Wong, Coupled clouds and chemistry of the giant planets — a case for multiprobes. Space Sci. Rev. 116, 121–136 (2005)

    ADS  Google Scholar 

  • K.H. Baines, M.E. Mickelson, L.E. Larson, D.W. Ferguson, The abundances of methane and ortho/para hydrogen on Uranus and Neptune: implications of New Laboratory 4-0 H2 quadrupole line parameters. Icarus 114, 328–340 (1995)

    ADS  Google Scholar 

  • D. Banfield, P. Gierasch, R. Dissly, Planetary descent probes: polarization nephelometer and hydrogen ortho/para instruments, in IEEE Aerospace Conference (IEEE Press, New York, 2005). https://ieeexplore.ieee.org/document/1559359

    Google Scholar 

  • B.W. Boehm, Software Engineering Economics (Prentice Hall, New York, 1981). https://www.amazon.com/Software-Engineering-Economics-Barry-Boehm/dp/0138221227/

    MATH  Google Scholar 

  • G.L. Brauer, D.E. Comick, D.W. Olson, F.M. Petersen, R. Stevenson, Program to Optimize Simulated Trajectories (POST), Volume I, Formulation Manual (Martin Marietta Corporation, 1990)

    Google Scholar 

  • L. Colin, D.M. Hunten, 11. Pioneer venus experiment descriptions. Space Sci. Rev. 20(4), 451–525 (1977)

    ADS  Google Scholar 

  • I. de Pater, P.N. Romani, S.K. Atreya, Possible microwave absorption by H2S gas in Uranus’ and Neptune’s atmospheres. Icarus 91, 220–233 (1991)

    ADS  Google Scholar 

  • J.A. Dec, R.D. Braun, Three-dimensional finite element ablative thermal response and design of thermal protection systems. J. Spacecr. Rockets 50, 725–734 (2013)

    ADS  Google Scholar 

  • H.M. Fahad, H. Shiraki, M. Amani, C. Zhang, V.S. Hebbar, W. Gao, H. Ota, M. Hettick, D. Kiriya, Y.-Z. Chen, Y.-L. Chueh, A. Javey, Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors. Sci. Adv. 3(3), e1602557 (2017). http://advances.sciencemag.org/content/3/3/e1602557

    ADS  Google Scholar 

  • J. Friedson, A.P. Ingersoll, Seasonal meridional energy balance and thermal structure of the atmosphere of Uranus - a radiative-convective-dynamical model. Icarus 69, 135–156 (1987)

    ADS  Google Scholar 

  • M. Fulchignoni, F. Angrilli, G. Bianchini, A. Bar-Nun, M.A. Barucci, W. Borucki, M. Coradini, A. Coustenis, F. Ferri, R.J. Grard, M. Hemelin, A.M. Harri, G.W. Leppelmeier, J.J. Lopez-Moreno, J.A.M. McDonnell, C. McKay, F.M. Neubauer, A. Pedersen, G. Picardi, V. Pirronello, R. Pirjola, R. Rodrigo, C. Schwingenschuh, A. Seiff, H. Svedhem, V. Vanzani, G. Visconti, J. Zarnecki, E. Thrane, The Huygens atmospheric structure instrument, in Huygens: Science, Payload and Mission, ed. by A. Wilson. ESA Special Publication, vol. 1177 (1997), p. 163

    Google Scholar 

  • P. Gage, M. Mahzari, K. Peterson, D. Ellerby, E. Venkatapathy, Technology readiness assessment for heeet tps, in International Planetary Probe Workshop: IPPW-16 (2019)

    Google Scholar 

  • A. Hannon, Y. Lu, H. Hong, J. Li, M. Meyyappan, Functionalized-carbon nanotube sensor for room temperature ammonia detection. Sens. Lett. 12(10), 1469–1476 (2014a)

    Google Scholar 

  • A. Hannon, Y. Lu, J. Li, M. Meyyappan, Room temperature carbon nanotube based sensor for carbon monoxide detection. J. Sens. Sens. Syst. (2014b). https://doi.org/10.5194/jsss-3-349-2014

    Article  Google Scholar 

  • A. Hannon, Y. Lu, J. Li, M. Meyyappan, A sensor array for the detection and discrimination of methane and other environmental pollutant gases. Sensors 16(8), 1163 (2016). http://www.mdpi.com/1424-8220/16/8/1163

    Google Scholar 

  • J.H. Hoffman, R.R. Hodges, W.W. Wright, V.A. Blevins, K.D. Duerksen, L.D. Brooks, Pioneer venus sounder probe neutral gas mass spectrometer. IEEE Trans. Geosci. Remote Sens. GE–18(1), 80–84 (1980)

    ADS  Google Scholar 

  • M. Hofstadter, A. Simon, Ice giants pre-decadal survey mission study report. National Aeronautics and Space Administration JPL D-100520

  • P.G.J. Irwin, D. Toledo, R. Garland, N.A. Teanby, L.N. Fletcher, G.A. Orton, B. Bézard, Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere. Nat. Astron. 2, 420–427 (2018)

    ADS  Google Scholar 

  • M.A. Janssen, A.P. Ingersoll, M.D. Allison, S. Gulkis, A.L. Laraia, K.H. Baines, S.G. Edgington, Y.Z. Anderson, K. Kelleher, F.A. Oyafuso, Saturn’s thermal emission at 2.2-cm wavelength as imaged by the Cassini RADAR radiometer. Icarus 226, 522–535 (2013)

    ADS  Google Scholar 

  • S. Johnson, M. Gasch, D. Leiser, D. Stewart, M. Stackpool, J. Thornton, C. Espinoza, Development of new TPS at NASA ames research center, in 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (AIAA, Washington, 2008)

    Google Scholar 

  • E. Karkoschka, M. Tomasko, The haze and methane distributions on Uranus from HST-STIS spectroscopy. Icarus 202, 287–309 (2009)

    ADS  Google Scholar 

  • T.W. Knacke, Parachute Recovery Systems Design Manual, 1st edn. (Para Pub., 1992)

    Google Scholar 

  • F.C. Krause, J.-P. Jones, S.C. Jones, J. Pasalic, K.J. Billings, W.C. West, M.C. Smart, R.V. Bugga, E.J. Brandon, M. Destephen, High specific energy lithium primary batteries as power sources for deep space exploration. J. Electrochem. Soc. 165, A2312–A2320 (2018). http://jes.ecsdl.org/content/165/10/A2312.full

    Google Scholar 

  • J. Li, Y. Lu, Carbon nanotube based chemical sensors for space and terrestrial applications. ECS Trans. 19, 7–15 (2009). http://ecst.ecsdl.org/content/19/6/7.abstract

    Google Scholar 

  • J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3, 929–933 (2003)

    ADS  Google Scholar 

  • C. Li, A. Ingersoll, M. Janssen, S. Levin, S. Bolton, V. Adumitroaie, M. Allison, J. Arballo, A. Bellotti, S. Brown, S. Ewald, L. Jewell, S. Misra, G. Orton, F. Oyafuso, P. Steffes, R. Williamson, The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophys. Res. Lett. 44, 5317–5325 (2017)

    ADS  Google Scholar 

  • G.F. Lindal, J.R. Lyons, D.N. Sweetnam, V.R. Eshleman, D.P. Hinson, The atmosphere of Uranus - results of radio occultation measurements with Voyager 2. Geophys. Res. Lett. 92, 14987–15001 (1987)

    Google Scholar 

  • R.D. Lorenz, Speed of sound in outer planet atmospheres. Planet. Space Sci. 47, 67–77 (1998)

    ADS  Google Scholar 

  • Y. Lu, J. Li, J. Han, H.-T. Ng, C. Binder, C. Partridge, M. Meyyappan, Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391, 344–348 (2004)

    ADS  Google Scholar 

  • F.S. Milos, Y.-K. Chen, M. Mahzari, Arcjet tests and thermal response analysis for dual-layer woven carbon phenolic. J. Spacecr. Rockets 55, 712–722 (2018)

    ADS  Google Scholar 

  • R.A. Mitcheltree, R.D. Braun, F.M. Cheatwood, F.A. Greene, J.N. Moss, Aerodynamics of the Mars microprobe entry vehicles. J. Spacecr. Rockets 36, 392–398 (1999)

    ADS  Google Scholar 

  • O. Mousis, L.N. Fletcher, J.-P. Lebreton, P. Wurz, T. Cavalié, A. Coustenis, R. Courtin, D. Gautier, R. Helled, P.G.J. Irwin, A.D. Morse, N. Nettelmann, B. Marty, P. Rousselot, O. Venot, D.H. Atkinson, J.H. Waite, K.R. Reh, A.A. Simon, S. Atreya, N. André, M. Blanc, I.A. Daglis, G. Fischer, W.D. Geppert, T. Guillot, M.M. Hedman, R. Hueso, E. Lellouch, J.I. Lunine, C.D. Murray, J. O’Donoghue, M. Rengel, A. Sánchez-Lavega, F.-X. Schmider, A. Spiga, T. Spilker, J.-M. Petit, M.S. Tiscareno, M. Ali-Dib, K. Altwegg, S.J. Bolton, A. Bouquet, C. Briois, T. Fouchet, S. Guerlet, T. Kostiuk, D. Lebleu, R. Moreno, G.S. Orton, J. Poncy, Scientific rationale for Saturn’s in situ exploration. Planet. Space Sci. 104, 29–47 (2014)

    ADS  Google Scholar 

  • O. Mousis, D.H. Atkinson, T. Cavalié, L.N. Fletcher, M.J. Amato, S. Aslam, F. Ferri, J.B. Renard, T. Spilker, E. Venkatapathy, P. Wurz, K. Aplin, A. Coustenis, M. Deleuil, M. Dobrijevic, T. Fouchet, T. Guillot, P. Hartogh, T. Hewagama, M.D. Hofstadter, V. Hue, R. Hueso, J.P. Lebreton, E. Lellouch, J. Moses, G.S. Orton, J.C. Pearl, A. Sánchez-Lavega, A. Simon, O. Venot, J.H. Waite, R.K. Achterberg, S. Atreya, F. Billebaud, M. Blanc, F. Borget, B. Brugger, S. Charnoz, T. Chiavassa, V. Cottini, L. d’Hendecourt, G. Danger, T. Encrenaz, N.J.P. Gorius, L. Jorda, B. Marty, R. Moreno, A. Morse, C. Nixon, K. Reh, T. Ronnet, F.X. Schmider, S. Sheridan, C. Sotin, P. Vernazza, G.L. Villanueva, Scientific rationale for Uranus and Neptune in situ explorations. Planet. Space Sci. 155, 12–40 (2018)

    ADS  Google Scholar 

  • NASA, NASA general safety program requirements (updated w/change 1) npr 8715.3d (2017)

  • National Research Council, New Frontiers in the Solar System: An Integrated Exploration Strategy (National Academies Press, Washington, 2003)

    Google Scholar 

  • National Research Council, Vision and Voyages for Planetary Science in the Decade 2013-2022 (The National Academies Press, Washington, 2011). http://www.nap.edu/catalog/13117/vision-and-voyages-for-planetary-science-in-the-decade-2013-2022

    Google Scholar 

  • H.B. Niemann, D.N. Harpold, S.K. Atreya, G.R. Carignan, D.M. Hunten, T.C. Owen, Galileo Probe Mass Spectrometer experiment. Space Sci. Rev. 60, 111–142 (1992)

    ADS  Google Scholar 

  • G.J. Nothwang, Pioneer venus spacecraft design and operation. IEEE Trans. Geosci. Remote Sens. GE–18(1), 5–10 (1980)

    ADS  Google Scholar 

  • G.S. Orton, J.I. Moses, L.N. Fletcher, A.K. Mainzer, D. Hines, H.B. Hammel, J. Martin-Torres, M. Burgdorf, C. Merlet, M.R. Line, Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere. Icarus 243, 471–493 (2014)

    ADS  Google Scholar 

  • V.I. Oyama, G.C. Carle, F. Woeller, S. Rocklin, J. Vogrin, W. Potter, G. Rosiak, C. Reichwein, Pioneer venus sounder probe gas chromatograph. IEEE Trans. Geosci. Remote Sens. GE–18(1), 85–93 (1980)

    ADS  Google Scholar 

  • B. Ragent, T. Wong, J.E. Blamont, A.J. Eskovitz, L.N. Harnett, A. Pallai, Pioneer venus sounder and small probes nephelometer instrument. IEEE Trans. Geosci. Remote Sens. GE–18(1), 111–117 (1980)

    ADS  Google Scholar 

  • B. Ragent, C.A. Privette, P. Avrin, J.G. Waring, C.E. Carlston, T.C.D. Knight, J.P. Martin, Galileo probe nephelometer experiment. Space Sci. Rev. 60, 179–201 (1992)

    ADS  Google Scholar 

  • K.M. Sayanagi, L.A. Sromovsky, P. Fry, I. De Pater, H. Hammel, K. Rages, C. Baranec, M. Delcroix, A. Wesley, R. Hueso, A. Sanchez-Lavega, A. Simon, HST and ground-based observations of bright storms on Uranus during 2014-2015, in AGU Fall Meeting Abstracts (2015), P41B–2055

    Google Scholar 

  • A. Seiff, D.W. Juergens, J.E. Lepetich, Atmosphere structure instruments on the four pioneer venus entry probes. IEEE Trans. Geosci. Remote Sens. GE–18(1), 105–111 (1980)

    ADS  Google Scholar 

  • A.P. Showman, A.P. Ingersoll, Interpretation of Galileo Probe Data and implications for Jupiter’s dry downdrafts. Icarus 132, 205–220 (1998)

    ADS  Google Scholar 

  • J.R. Smith, R. Ramos, Data acquisition for measuring the wind on venus from pioneer venus. IEEE Trans. Geosci. Remote Sens. GE–18(1), 126–130 (1980)

    ADS  Google Scholar 

  • T.R. Spilker, NH3, H2S, and the radio brightness temperature spectra of the giant planets. Earth Moon Planets 67, 89–94 (1994)

    ADS  Google Scholar 

  • L.A. Sromovsky, H.E. Revercomb, V.E. Suomi, Pioneer Venus small probes net flux radiometer experiment. IEEE Trans. Geosci. Remote Sens. 18, 117–122 (1980)

    ADS  Google Scholar 

  • L.A. Sromovsky, F.A. Best, H.E. Revercomb, J. Hayden, Galileo net flux radiometer experiment. Space Sci. Rev. 60, 233–262 (1992)

    ADS  Google Scholar 

  • L.A. Sromovsky, P.M. Fry, J.H. Kim, Methane on Uranus: the case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy. Icarus 215, 292–312 (2011)

    ADS  Google Scholar 

  • L.A. Sromovsky, E. Karkoschka, P.M. Fry, H.B. Hammel, I. de Pater, K. Rages, Methane depletion in both polar regions of Uranus inferred from HST/STIS and Keck/NIRC2 observations. Icarus 238, 137–155 (2014)

    ADS  Google Scholar 

  • S.A. Striepe, R.W. Powell, P.N. Desai, E.M. Queen, G.L. Brauer, D.E. Cornick, D.W. Olson, F.M. Petersen, R. Stevenson, M.C. Engel, S.M. Marsh, A.M. Gromoko, Program to Optimize Simulated Trajectories (POST II): Volume 2, Utilization Manual, (Martin Marietta Corporation, 2004)

    Google Scholar 

  • S.A. Striepe, R.W. Powell, P.N. Desai, E.M. Queen, G.L. Brauer, D.E. Cornick, D.W. Olson, F.M. Petersen, R. Stevenson, M.C. Engel, S.M. Marsh, A.M. Gromoko, Program to Optimize Simulated Trajectories (POST2), Vol. 2: Utilization Manual, Ver 3.0 (NESC, NASA Langley Research Center, 2014)

    Google Scholar 

  • R. Surampudi, J. Blosiu, R. Bugga, R. Brandon, M. Smart, J. Elliott, J. Castillo, T. Yi, L. Lee, M. Piszczor, T. Miller, C. Reid, C. Taylor, S. Liu, E. Plichta, C. Iannello, Energy storage technologies for future planetary science missions, jpl d-101146 (2017)

  • M.G. Tomasko, L.R. Doose, J.M. Palmer, A. Holmes, W.L. Wolfe, A.G. Debell, L.G. Brod, R.R. Sholes, Pioneer venus sounder probe solar flux radiometer. IEEE Trans. Geosci. Remote Sens. GE–18(1), 93–97 (1980)

    ADS  Google Scholar 

  • U. von Zahn, D.M. Hunten, The Jupiter Helium Interferometer experiment on the Galileo entry probe. Space Sci. Rev. 60, 263–281 (1992)

    ADS  Google Scholar 

  • C.R. Webster, P.R. Mahaffy, Determining the local abundance of Martian methane and its 13C/12C and D/H isotopic ratios for comparison with related gas and soil analysis on the 2011 Mars Science Laboratory (MSL) mission. Planet. Space Sci. 59, 271–283 (2011)

    ADS  Google Scholar 

  • S.J. Weidenschilling, J.S. Lewis, Atmospheric and cloud structures of the jovian planets. Icarus 20, 465–476 (1973)

    ADS  Google Scholar 

Download references

Acknowledgements

The SNAP mission concept study was supported by Planetary Science Deep Space SmallSat Studies (PSDS3) Program Grant NNX17AK31G to Hampton University (PI: K. M. Sayanagi). The SNAP Mission Concept Design was performed at NASA Langley Research Center’s Engineering Design Studio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Sayanagi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In Situ Exploration of the Ice Giants: Science and Technology

Edited by Olivier J. Mousis and David H. Atkinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayanagi, K.M., Dillman, R.A., Atkinson, D.H. et al. Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus. Space Sci Rev 216, 72 (2020). https://doi.org/10.1007/s11214-020-00686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00686-7

Keywords

Navigation