Skip to main content

Advertisement

Log in

Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

A growing number of satellites in the outer solar system likely have global oceans beneath their outer icy shells. While the presence of liquid water makes these ocean worlds compelling astrobiological targets, the exchange of heat and materials between the deep interior and the surface also plays a critical role in promoting habitable environments. In this article, we combine geophysical, geochemical, and geological observations of the Jovian satellites Europa, Ganymede, and Callisto as well as the Saturnian satellites Enceladus and Titan to summarize our current state of understanding of their interiors and surface exchange processes. Potential mechanisms for driving exchange processes upward from the ocean floor and downward from the satellite surface are then reviewed, which are primarily based on numerical models of ice shell and ocean dynamics and complemented by terrestrial analog studies. Future missions to explore these exo-oceans will further revolutionize our understanding of ice-ocean exchange processes and their implications for the habitability of these worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. \(J_{2}\) and \(C_{22}\) are coefficients in the spherical harmonic representation of the gravity field outside a satellite. If the satellite is a spherically symmetric rotating body, its equilibrium physical shape will be an oblate spheroid. In that case, \(J_{0}\) measures the mass of the satellite and \(J_{2}\) the flattening of its gravity field. In the case of a tidally deformed body, the equilibrium figure is triaxial and \(C_{22}\) is the dominant coefficient describing the deformation of the gravity field due to rotation and tidal deformation. If \(C>B>A\) are the principal moments of inertia of the satellite, then in case of the spherically symmetric rotating body A=B and \(Ma^{2} J_{2}=C-A\), where \(M\) and \(a\) are the mass and equatorial radius of the satellite. For the tidally deformed body, \(4Ma^{2}C_{22}=B-A\).

References

  • J. Aguzzi, M.M. Flexas, S. Flögel, C. Lo Iacono, M. Tangherlini, C. Costa, S. Marini, N. Bahamon, S. Martini, E. Fanelli et al., Exo-ocean exploration with deep-sea sensor and platform technologies. Astrobiology (2020). https://doi.org/10.1089/ast.2019.2129

    Article  Google Scholar 

  • M.F. A’Hearn, L.M. Feaga, H.U. Keller, H. Kawakita, D.L. Hampton, J. Kissel, K.P. Klaasen, L.A. McFadden, K.J. Meech, P.H. Schultz et al., Cometary volatiles and the origin of comets. Astrophys. J. 758(1), 29 (2012)

    ADS  Google Scholar 

  • M.L. Allison, S.M. Clifford, Ice-covered water volcanism on Ganymede. J. Geophys. Res., Solid Earth 92(B8), 7865–7876 (1987). https://doi.org/10.1029/JB092iB08p07865

    Article  Google Scholar 

  • K. Altwegg, H. Balsiger, N. Hänni, M. Rubin, M. Schuhmann, I. Schroeder, T. Sémon, S. Wampfler, J.J. Berthelier, C. Briois et al., Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae. Nat. Astron. 4, 533–540 (2020).

    ADS  Google Scholar 

  • H. Amit, G. Choblet, G. Tobie, F. Terra-Nova, O. Čadek, M. Bouffard, Cooling patterns in rotating thin spherical shells—Application to Titan’s subsurface ocean. Icarus 338, 113509 (2020)

    Google Scholar 

  • J.D. Anderson, E.L. Lau, W.L. Sjogren, G. Schubert, W.B. Moore, Gravitational constraints on the internal structure of Ganymede. Nature 384(6609), 541 (1996)

    ADS  Google Scholar 

  • J.D. Anderson, G. Schubert, R.A. Jacobson, E.L. Lau, W.B. Moore, W.L. Sjogren, Distribution of rock, metals, and ices in Callisto. Science 280(5369), 1573–1576 (1998a). https://doi.org/10.1126/Science.280.5369.1573

    Article  ADS  Google Scholar 

  • J.D. Anderson, G. Schubert, R.A. Jacobson, E.L. Lau, W.B. Moore, W.L. Sjogren, Europa’s differentiated internal structure: inferences from four Galileo encounters. Science 281, 2019–2022 (1998b)

    ADS  Google Scholar 

  • J.D. Anderson, R.A. Jacobson, T.P. McElrath, W.B. Moore, G. Schubert, P.C. Thomas, Shape, mean radius, gravity field, and interior structure of Callisto. Icarus 153(1), 157–161 (2001)

    ADS  Google Scholar 

  • N. Artemieva, J. Lunine, Cratering on Titan: impact melt, ejecta, and the fate of surface organics. Icarus 164, 471–480 (2003). https://doi.org/10.1016/S0019-1035(03)00148-9

    Article  ADS  Google Scholar 

  • N. Artemieva, J.I. Lunine, Impact cratering on Titan II. Global melt, escaping ejecta, and aqueous alteration of surface organics. Icarus 175, 522–533 (2005). https://doi.org/10.1016/j.icarus.2004.12.005

    Article  ADS  Google Scholar 

  • Y. Ashkenazy, H. Gildor, M. Losch, F.A. Macdonald, D.P. Schrag, E. Tziperman, Dynamics of a Snowball Earth ocean. Nature 495, 90–93 (2013). https://doi.org/10.1038/nature11894

    Article  ADS  Google Scholar 

  • Y. Ashkenazy, R. Sayag, E. Tziperman, Dynamics of the global meridional ice flow of Europa’s icy shell. Nat. Astron. 2(1), 43–49 (2018). https://doi.org/10.1038/s41550-017-0326-7

    Article  ADS  Google Scholar 

  • S.K. Atreya, E.Y. Adams, H.B. Niemann, J.E. Demick-Montelara, T.C. Owen, M. Fulchignoni, F. Ferri, E.H. Wilson, Titan’s methane cycle. Planet. Space Sci. 54(12), 1177–1187 (2006). https://doi.org/10.1016/j.pss.2006.05.028

    Article  ADS  Google Scholar 

  • J.M. Aurnou, M.H. Heimpel, J. Wicht, The effects of vigorous mixing in a convective model of zonal flow on the Ice Giants. Icarus 190, 110–126 (2007)

    ADS  Google Scholar 

  • J.M. Aurnou, M.H. Heimpel, L. Allen, E.M. King, J. Wicht, Convective heat transfer and the pattern of thermal emission on the gas giants. Geophys. J. Int. 173, 793–801 (2008)

    ADS  Google Scholar 

  • R.M. Baland, G. Tobie, A. Lefevre, T. Van Hoolst, Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 29–41 (2014)

    ADS  Google Scholar 

  • P.S. Balog, R.A. Secco, D.C. Rubie, D.J. Frost, Equation of state of liquid Fe-10 wt% S: Implications for the metallic cores of planetary bodies. J. Geophys. Res. Solid Earth 108(B2) (2003). https://doi.org/10.1029/2001JB001646

  • L.M. Barge, L.M. White, Experimentally testing hydrothermal vent origin of life on Enceladus and other icy/ocean worlds. Astrobiology 17(9), 820–833 (2017)

    ADS  Google Scholar 

  • A.C. Barr, Mobile lid convection beneath Enceladus’ south polar terrain. J. Geophys. Res., Planets 113(E7) (2008). https://doi.org/10.1029/2008JE003114

  • A.C. Barr, R.M. Canup, Origin of the Ganymede–Callisto dichotomy by impacts during the late heavy bombardment. Nat. Geosci. 3(3), 164 (2010)

    ADS  Google Scholar 

  • A.C. Barr, W.B. McKinnon, Convection in ice I shells and mantles with self-consistent grain size. J. Geophys. Res., Planets 112(E2) (2007). https://doi.org/10.1029/2006JE002781

  • A.C. Barr, R.T. Pappalardo, Onset of convection in the icy Galilean satellites: Influence of rheology. J. Geophys. Res., Planets 110(E12) (2005). https://doi.org/10.1029/2004JE002371

  • A.C. Barr, A.P. Showman, Heat transfer in Europa’s icy shell, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 405–430

    Google Scholar 

  • C. Béghin, O. Randriamboarison, M. Hamelin, E. Karkoschka, C. Sotin, R.C. Whitten, J.J. Berthelier, R. Grard, F. Simões, Analytic theory of Titan’s Schumann resonance: constraints on ionospheric conductivity and buried water ocean. Icarus 218(2), 1028–1042 (2012)

    ADS  Google Scholar 

  • M. Běhounková, G. Tobie, G. Choblet, O. Čadek, Coupling mantle convection and tidal dissipation: applications to Enceladus and Earth-like planets. J. Geophys. Res., Planets 115(E14), E09011 (2010). https://doi.org/10.1029/2009JE003564

    Article  ADS  Google Scholar 

  • M. Běhounková, G. Tobie, G. Choblet, O. Čadek, Tidally-induced melting events as the origin of south-pole activity on Enceladus. Icarus 219, 655–664 (2012). https://doi.org/10.1016/j.icarus.2012.03.024

    Article  ADS  Google Scholar 

  • M. Běhounková, G. Tobie, O. Čadek, G. Choblet, C. Porco, F. Nimmo, Timing of water plume eruptions on Enceladus explained by interior viscosity structure. Nat. Geosci. 8, 601–604 (2015). https://doi.org/10.1038/ngeo2475

    Article  ADS  Google Scholar 

  • M. Běhounková, O. Souček, J. Hron, O. Čadek, Plume activity and tidal deformation on Enceladus influenced by faults and variable ice shell thickness. Astrobiology 17(9), 941–954 (2017). https://doi.org/10.1089/ast.2016.1629

    Article  ADS  Google Scholar 

  • M.J.S. Belton, J.W. Head, A.P. Ingersoll, R. Greeley, A.S. McEwen, K.P. Klaasen, D. Senske, R. Pappalardo, G. Collins, A.R. Vasavada, R. Sullivan, D. Simonelli, P. Geissler, M.H. Carr, M.E. Davies, J. Veverka, P.J. Gierasch, D. Banfield, M. Bell, C.R. Chapman, C. Anger, R. Greenberg, G. Neukum, C.B. Pilcher, R.F. Beebe, J.A. Burns, F. Fanale, W. Ip, T.V. Johnson, D. Morrison, J. Moore, G.S. Orton, P. Thomas, R.A. West, Galileo’s first images of Jupiter and the Galilean Satellites. Science 274(5286), 377–385 (1996). https://doi.org/10.1126/science.274.5286.377

    Article  ADS  Google Scholar 

  • D.F. Berisford, J. Leichty, A. Klesh, K.P. Hand, Remote under-ice roving in Alaska with the buoyant rover for under-ice exploration, in AGU Fall Meeting Abstracts (2013)

    Google Scholar 

  • M. Beuthe, Spatial patterns of tidal heating. Icarus 223, 308–329 (2013)

    ADS  Google Scholar 

  • M. Beuthe, Crustal control of dissipative ocean tides in Enceladus and other icy moons. Icarus 280, 278–299 (2016)

    ADS  Google Scholar 

  • M. Beuthe, Enceladus’s crust as a non-uniform thin shell: I tidal deformations. Icarus 302, 145–174 (2018). https://doi.org/10.1016/j.icarus.2017.11.009

    Article  ADS  Google Scholar 

  • M. Beuthe, A. Rivoldini, A. Trinh, Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophys. Res. Lett. 43(19), 10,088–10,096 (2016)

    Google Scholar 

  • B. Bézard, R.V. Yelle, C.A. Nixon, The composition of Titan’s atmosphere, in Titan: Interior, Surface, Atmosphere, and Space Environment, ed. by I. Müller-Wodarg, C.A. Griffith, E. Lellouch, T.E. Cravens (Cambridge University Press, Cambridge, 2014), p. 158

    Google Scholar 

  • E.B. Bierhaus, K. Zahnle, C.R. Chapman, R.T. Pappalardo, W.B. McKinnon, K.K. Khurana, Europa’s crater distributions and surface ages, in Europa (University of Arizona Press, Tucson, 2009), p. 161

    Google Scholar 

  • S.E. Billings, S.A. Kattenhorn, Comparison between terrestrial explosion crater morphology in floating ice and Europan chaos, in Lunar and Planetary Institute Science Conference Abstracts, vol. 34 (2003), p. 1955

    Google Scholar 

  • S.E. Billings, S.A. Kattenhorn, The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges. Icarus 177(2), 397–412 (2005)

    ADS  Google Scholar 

  • M.T. Bland, A.P. Showman, G. Tobie, The orbital–thermal evolution and global expansion of Ganymede. Icarus 200(1), 207–221 (2009)

    ADS  Google Scholar 

  • M. Bouffard, S. Labrosse, G. Choblet, A. Fournier, J. Aubert, P.J. Tackley, A particle-in-cell method for studying double-diffusive convection in the liquid layers of planetary interiors. J. Comput. Phys. 346, 552–571 (2017)

    ADS  MathSciNet  Google Scholar 

  • A. Bouquet, C.R. Glein, J.H. Waite Jr., How adsorption affects the gas–ice partitioning of organics erupted from Enceladus. Astrophys. J. 873(1), 28 (2019)

    ADS  Google Scholar 

  • M.E. Brown, K.P. Hand, Salts and radiation products on the surface of Europa. Astrophys. J. 145, 110 (2013)

    ADS  Google Scholar 

  • B. Buffington, T. Lam, S. Campagnola, J. Ludwinski, E. Ferguson, B. Bradley, C. Scott, M. Ozimek, A. Haapala Chalk, F. Siddique, Evolution of trajectory design requirements on NASA’s Planned Europa Clipper Mission, in 68th International Astronautical Congress (IAC), IAC-17-C1.7.8 (2017)

    Google Scholar 

  • J.J. Buffo, Multiphase reactive transport in planetary ices. PhD thesis, Georgia Institute of Technology (2019)

  • J.J. Buffo, B.E. Schmidt, C. Huber, Multiphase reactive transport and platelet ice accretion in the sea ice of McMurdo sound, Antarctica. J. Geophys. Res., Oceans 123(1), 324–345 (2018)

    ADS  Google Scholar 

  • O. Čadek, G. Tobie, T. Van Hoolst, M. Massé, G. Choblet, A. Lefèvre, G. Mitri, R.M. Baland, M. Běhounková, O. Bourgeois et al., Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Lett. 43(11), 5653–5660 (2016)

    ADS  Google Scholar 

  • O. Čadek, M. Běhounková, G. Tobie, G. Choblet, Viscoelastic relaxation of Enceladus’s ice shell. Icarus 291, 31–35 (2017). https://doi.org/10.1016/j.icarus.2017.03.011

    Article  ADS  Google Scholar 

  • O. Čadek, O. Souček, M. Běhounková, G. Choblet, G. Tobie, J. Hron, Long-term stability of Enceladus’ uneven ice shell. Icarus 319, 476–484 (2019)

    ADS  Google Scholar 

  • R.W. Carlson, W.M. Calvin, J.B. Dalton, G.B. Hansen, R.L. Hudson, R.E. Johnson, T.B. McCord, M.H. Moore, Europa’s surface composition, in Europa (2009), pp. 283–327

    Google Scholar 

  • M.H. Carr, M.J.S. Belton, C.R. Chapman, M.E. Davies, P. Geissler, R. Greenberg, A.S. McEwen, B.R. Tufts, R. Greeley, R. Sullivan, J.W. Head, R.T. Pappalardo, K.P. Klaasen, T.V. Johnson, J. Kaufman, D. Senske, J. Moore, G. Neukum, G. Schubert, J.A. Burns, P. Thomas, J. Veverka, R. Greeley, Evidence for a subsurface ocean on Europa. Nature 391, 363–365 (1998)

    ADS  Google Scholar 

  • R. Casacchia, R.G. Strom, Geologic evolution of Galileo Regio, Ganymede. J. Geophys. Res., Solid Earth 89(S02), B419–B428 (1984)

    ADS  Google Scholar 

  • J.C. Castillo-Rogez, J.I. Lunine, Evolution of Titan’s rocky core constrained by Cassini observations. Geophys. Res. Lett. 37(20) (2010). https://doi.org/10.1029/2010GL044398

  • E.M.A. Chen, F. Nimmo, Obliquity tides do not significantly heat Enceladus. Icarus 214(2), 779–781 (2011)

    ADS  Google Scholar 

  • E.M.A. Chen, F. Nimmo, G.A. Glatzmaier, Tidal heating in icy satellite oceans. Icarus 229, 11–30 (2014)

    ADS  Google Scholar 

  • J.S. Cheng, J.M. Aurnou, K. Julien, R.P.J. Kunnen, A heuristic framework for next-generation models of geostrophic convective turbulence. Geophys. Astrophys. Fluid Dyn. 112(4), 277–300 (2018)

    ADS  Google Scholar 

  • G. Choblet, G. Tobie, C. Sotin, M. Běhounková, O. Čadek, F. Postberg, O. Souček, Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1(12), 841 (2017a)

    ADS  Google Scholar 

  • G. Choblet, G. Tobie, C. Sotin, K. Kalousová, O. Grasset, Heat transport in the high-pressure ice mantle of large icy moons. Icarus 285, 252–262 (2017b). https://doi.org/10.1016/j.icarus.2016.12.002

    Article  ADS  Google Scholar 

  • M. Choukroun, O. Grasset, Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics. J. Chem. Phys. 133, 144502 (2010)

    ADS  Google Scholar 

  • M. Choukroun, C. Sotin, Is Titan’s shape caused by its meteorology and carbon cycle? Geophys. Res. Lett. 39(4) (2012). https://doi.org/10.1029/2011GL050747

  • B.C. Christner, J.C. Priscu, A.M. Achberger, C. Barbante, S.P. Carter, K. Christianson, A.B. Michaud, J.A. Mikucki, A.C. Mitchell, M.L. Skidmore et al., A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512(7514), 310 (2014)

    Google Scholar 

  • C.F. Chyba, Energy for microbial life on Europa. Nature 403(6768), 381 (2000)

    ADS  Google Scholar 

  • C.F. Chyba, C.B. Phillips, Possible ecosystems and the search for life on Europa. Proc. Natl. Acad. Sci. 98(3), 801–804 (2001)

    ADS  Google Scholar 

  • C.F. Chyba, C.B. Phillips, Europa as an abode of life. Orig. Life Evol. Biosph. 32(1), 47–67 (2002). https://doi.org/10.1023/A:1013958519734

    Article  ADS  Google Scholar 

  • P.L. Clay, R. Burgess, H. Busemann, L. Ruzié-Hamilton, B. Joachim, J.M.D. Day, C.J. Ballentine, Halogens in chondritic meteorites and terrestrial accretion. Nature 551(7682), 614 (2017)

    ADS  Google Scholar 

  • G.C. Collins, J.C. Goodman, Enceladus’ south polar sea. Icarus 189(1), 72–82 (2007)

    ADS  Google Scholar 

  • G.C. Collins, F. Nimmo, Chaotic terrain on Europa, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 259–281

    Google Scholar 

  • G.C. Collins, J.W. Head, R.T. Pappalardo, N.A. Spaun, Evaluation of models for the formation of chaotic terrain on Europa. J. Geophys. Res. 105, 1709–1716 (2000)

    ADS  Google Scholar 

  • J.A.D. Connolly, The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10(10) (2009). https://doi.org/10.1029/2009GC002540

  • G.J. Consolmagno, J.S. Lewis, The evolution of icy satellite interiors and surfaces. Icarus 34(2), 280–293 (1978). https://doi.org/10.1016/0019-1035(78)90168-9

    Article  ADS  Google Scholar 

  • P. Corlies, A.G. Hayes, S.P.D. Birch, R. Lorenz, B.W. Stiles, R. Kirk, V. Poggiali, H. Zebker, L. Iess, Titan’s topography and shape at the end of the Cassini Mission. Geophys. Res. Lett. 44(23), 11–754 (2017)

    Google Scholar 

  • R. Cox, A.W. Bauer, Impact breaching of Europa’s ice: constraints from numerical modeling. J. Geophys. Res., Planets 120(10), 1708–1719 (2015)

    ADS  Google Scholar 

  • R. Cox, L.C.F. Ong, M. Arakawa, K.C. Scheider, Impact penetration of Europa’s ice crust as a mechanism for formation of chaos terrain. Meteorit. Planet. Sci. 43(12), 2027–2048 (2008).

    ADS  Google Scholar 

  • K.L. Craft, G.W. Patterson, R.P. Lowell, L. Germanovich, Fracturing and flow: investigations on the formation of shallow water sills on Europa. Icarus 274, 297–313 (2016). https://doi.org/10.1016/j.icarus.2016.01.023

    Article  ADS  Google Scholar 

  • M. Craven, F. Carsey, A. Behar, J. Matthews, R. Brand, A. Elcheikh, S. Hall, A. Treverrow, Borehole imagery of meteoric and marine ice layers in the Amery Ice Shelf, East Antarctica. J. Glaciol. 51(172), 75–84 (2005)

    ADS  Google Scholar 

  • M. Craven, I. Allison, H.A. Fricker, R.C. Warner, Properties of a marine ice layer under the amery ice shelf, East Antarctica. J. Glaciol. 55(192), 717–728 (2009)

    ADS  Google Scholar 

  • G.D. Crawford, D.J. Stevenson, Gas-driven water volcanism and the resurfacing of Europa. Icarus 73(1), 66–79 (1988). https://doi.org/10.1016/0019-1035(88)90085-1

    Article  ADS  Google Scholar 

  • S.K. Croft, R. Casacchia, R.G. Strom, (US) GS, Geologic map of the tiamat sulcus quadrangle (jg-9) of ganymede. U S Geol Surv Map I-1548 (1994)

  • M. Ćuk, L. Dones, D. Nesvornỳ, Dynamical evidence for a late formation of Saturn’s moons. Astrophys. J. 820(2), 97 (2016)

    ADS  Google Scholar 

  • T. Cwik, W. Zimmerman, M. Smith, An architecture for a nuclear powered cryobot to access the oceans of icy worlds, in Nuclear and Emerging Technologies for Space, American Nuclear Society Topical Meeting (2019), pp. abstract–122

    Google Scholar 

  • B. Dachwald, J. Mikucki, S. Tulaczyk, I. Digel, C. Espe, M. Feldmann, G. Francke, J. Kowalski, C. Xu, IceMole: a maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems. Ann. Glaciol. 55(65), 14–22 (2014)

    ADS  Google Scholar 

  • A. Davaille, C. Jaupart, Transient high-Rayleigh-number thermal convection with large viscosity variations. J. Fluid Mech. 253, 141–166 (1993). https://doi.org/10.1017/S0022112093001740

    Article  ADS  Google Scholar 

  • S. De La Chapelle, H. Milsch, O. Castelnau, P. Duval, Compressive creep of ice containing a liquid intergranular phase: rate-controlling processes in the dislocation creep regime. Geophys. Res. Lett. 26(2), 251–254 (1999). https://doi.org/10.1029/1998GL900289

    Article  ADS  Google Scholar 

  • N. Dello Russo, H. Kawakita, R.J. Vervack Jr., H.A. Weaver, Emerging trends and a comet taxonomy based on the volatile chemistry measured in thirty comets with high-resolution infrared spectroscopy between 1997 and 2013. Icarus 278, 301–332 (2016)

    ADS  Google Scholar 

  • J.W. Deming, H. Eicken, Life in Ice. Planets and Life: The Emerging Science of Astrobiology (2007), pp. 292–312

    Google Scholar 

  • D.E. Dempsey, P.J. Langhorne, Geometric properties of platelet ice crystals. Cold Reg. Sci. Technol. 78, 1–13 (2012)

    Google Scholar 

  • D.E. Dempsey, P.J. Langhorne, N.J. Robinson, M.J.M. Williams, T.G. Haskell, R.D. Frew, Observation and modeling of platelet ice fabric in McMurdo Sound, Antarctica. J. Geophys. Res., Oceans 115(C1) (2010). https://doi.org/10.1029/2008JC005264

  • D.J. Des Marais, J.A. Nuth III, L.J. Allamandola, A.P. Boss, J.D. Farmer, T.M. Hoehler, B.M. Jakosky, V.S. Meadows, A. Pohorille, B. Runnegar et al., The NASA astrobiology roadmap. Astrobiology 8(4), 715–730 (2008)

    ADS  Google Scholar 

  • F. Deschamps, C. Sotin, Inversion of two-dimensional numerical convection experiments for a fluid with a strongly temperature-dependent viscosity. Geophys. J. Int. 143(1), 204–218 (2000). https://doi.org/10.1046/j.1365-246x.2000.00228.x

    Article  ADS  Google Scholar 

  • F. Deschamps, C. Sotin, Thermal convection in the outer shell of large icy satellites. J. Geophys. Res., Planets 106(E3), 5107–5121 (2001)

    ADS  Google Scholar 

  • D. Dhingra, M.M. Hedman, R.N. Clark, P.D. Nicholson, Spatially resolved near infrared observations of Enceladus’ tiger stripe eruptions from Cassini vims. Icarus 292, 1–12 (2017). https://doi.org/10.1016/j.icarus.2017.03.002

    Article  ADS  Google Scholar 

  • F. Dhooghe, J. De Keyser, K. Altwegg, C. Briois, H. Balsiger, J.J. Berthelier, U. Calmonte, G. Cessateur, M.R. Combi, E. Equeter et al., Halogens as tracers of protosolar nebula material in comet 67P/Churyumov–Gerasimenko. Mon. Not. R. Astron. Soc. 472(2), 1336–1345 (2017)

    ADS  Google Scholar 

  • A.J. Dombard, G.W. Patterson, A.P. Lederer, L.M. Prockter, Flanking fractures and the formation of double ridges on Europa. Icarus 223(1), 74–81 (2013). https://doi.org/10.1016/j.icarus.2012.11.021

    Article  ADS  Google Scholar 

  • M.K. Dougherty, K.K. Khurana, F.M. Neubauer, C.T. Russell, J. Saur, J. Leisner, M.E. Burton, Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311(5766), 1406–1409 (2006)

    ADS  Google Scholar 

  • G. Durand, J. Weiss, V. Lipenkov, J.M. Barnola, G. Krinner, F. Parrenin, B. Delmonte, C. Ritz, P. Duval, R. Röthlisberger, M. Bigler, Effect of impurities on grain growth in cold ice sheets. J. Geophys. Res., Earth Surf. 111(F1) (2006). https://doi.org/10.1029/2005JF000320

  • D. Durante, D.J. Hemingway, P. Racioppa, L. Iess, D.J. Stevenson, Titan’s gravity field and interior structure after Cassini. Icarus 326, 123–132 (2019)

    ADS  Google Scholar 

  • W.B. Durham, L.A. Stern, Rheological properties of water ice–applications to satellites of the outer planets. Annu. Rev. Earth Planet. Sci. 29(1), 295–330 (2001). https://doi.org/10.1146/annurev.earth.29.1.295

    Article  ADS  Google Scholar 

  • P. Dutrieux, C. Stewart, A. Jenkins, K.W. Nicholls, H.F.J. Corr, E. Rignot, K. Steffen, Basal terraces on melting ice shelves. Geophys. Res. Lett. 41(15), 5506–5513 (2014)

    ADS  Google Scholar 

  • G.D. Egbert, R.D. Ray, Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405, 775 (2000). https://doi.org/10.1038/35015531

    Article  ADS  Google Scholar 

  • S.A. Fagents, Considerations for effusive cryovolcanism on Europa: the post-Galileo perspective. J. Geophys. Res., Planets 108(E12) (2003). https://doi.org/10.1029/2003JE002128

  • S.A. Fagents, R. Greeley, R.J. Sullivan, R.T. Pappalardo, L.M. Prockter (Galileo SSI Team T), Cryomagmatic mechanisms for the formation of Rhadamanthys Linea, triple band margins, and other low-albedo features on Europa. Icarus 144(1), 54–88 (2000). https://doi.org/10.1006/icar.1999.6254

    Article  ADS  Google Scholar 

  • F.P. Fanale, Y.H. Li, E. De Carlo, C. Farley, S.K. Sharma, K. Horton, J.C. Granahan, An experimental estimate of Europa’s “ocean” composition independent of Galileo orbital remote sensing. J. Geophys. Res., Planets 106(E7), 14595–14600 (2001)

    ADS  Google Scholar 

  • R. Farber, J.C. Goodman, How quickly does drifting material traverse through Europa’s ocean? LPI Contrib. 1774 4059 (2014)

    ADS  Google Scholar 

  • R. Feistel, E. Hagen, On the GIBBS thermodynamic potential of seawater. Prog. Oceanogr. 36(4), 249–327 (1995)

    ADS  Google Scholar 

  • H.J.S. Fernando, R. Chen, B.A. Ayotte, Development of a point plume in the presence of background rotation. Phys. Fluids 10(9), 2369–2383 (1998)

    ADS  Google Scholar 

  • P.H. Figueredo, R. Greeley, Geologic mapping of the northern leading hemisphere of Europa from Galileo solid-state imaging data. J. Geophys. Res. 105, 22629–22646 (2000)

    ADS  Google Scholar 

  • P.H. Figueredo, R. Greeley, Resurfacing history of Europa from pole-to-pole geological mapping. Icarus 167, 287–312 (2004)

    ADS  Google Scholar 

  • P.H. Figueredo, F.C. Chuang, J.A. Rathbun, R.L. Kirk, R. Greeley, Geology and origin of Europa’s Mitten feature (Murias Chaos). J. Geophys. Res. 107, 5026 (2002)

    Google Scholar 

  • P.D. Fischer, M.E. Brown, K.P. Hand, Spatially resolved spectroscopy of Europa: the distinct spectrum of large-scale chaos. Astron. J. 150(5), 164 (2015)

    ADS  Google Scholar 

  • A. Fortes, P. Grindrod, S. Trickett, L. Vočadlo, Ammonium sulfate on Titan: possible origin and role in cryovolcanism. Icarus 188(1), 139–153 (2007). https://doi.org/10.1016/j.icarus.2006.11.002

    Article  ADS  Google Scholar 

  • H.A. Fricker, S. Popov, I. Allison, N. Young, Distribution of marine ice beneath the Amery Ice Shelf. Geophys. Res. Lett. 28, 2241–2244 (2001)

    ADS  Google Scholar 

  • E.J. Gaidos, F. Nimmo, Tectonics and water on Europa. Nature 405, 637 (2000). https://doi.org/10.1038/35015170

    Article  ADS  Google Scholar 

  • E. Gaidos, B. Lanoil, T. Thorsteinsson, A. Graham, M.L. Skidmore, S.K. Han, T. Rust, B. Popp, A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4(3), 327–344 (2004)

    ADS  Google Scholar 

  • B. Galton-Fenzi, J.R. Hunter, R. Coleman, S.J. Marsland, R.C. Warner, Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. J. Geophys. Res. 117, C09031 (2012). https://doi.org/10.1029/2012JC008214

    Article  ADS  Google Scholar 

  • P. Gao, D.J. Stevenson, Nonhydrostatic effects and the determination of icy satellites’ moment of inertia. Icarus 226(2), 1185–1191 (2013)

    ADS  Google Scholar 

  • T. Gastine, J. Wicht, J.M. Aurnou, Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225, 156–172 (2013)

    ADS  Google Scholar 

  • T. Gastine, J. Wicht, J. Aubert, Scaling regimes in spherical shell rotating convection. J. Fluid Mech. 808, 690–732 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • P. Geissler, R. Greenberg, G. Hoppa, A. McEwen, R. Tufts, C. Phillips, B. Clark, M. Ockert-Bell, P. Helfenstein, J. Burns, J. Veverka, R. Sullivan, R. Greeley, R. Pappalardo, J. Head, M. Belton, T. Denk, Evolution of lineaments on Europa: clues from Galileo Multispectral Imaging Observations. Icarus 135(1), 107–126 (1998). https://doi.org/10.1006/icar.1998.5980

    Article  ADS  Google Scholar 

  • C.R. German, A. Boetius, Robotics-based scientific investigations at an ice-oean interface: first results from Nereid Under Ice in the Arctic. LPI Contrib. 2168, 6002 (2019)

    ADS  Google Scholar 

  • C. Gissinger, L. Petitdemange, A magnetically driven equatorial jet in Europa’s ocean. Nat. Astron. 3, 401–407 (2019)

    ADS  Google Scholar 

  • D.F. Gleeson, C. Williamson, S.E. Grasby, R.T. Pappalardo, J.R. Spear, A.S. Templeton, Low temperature S0 biomineralization at a supraglacial spring system in the Canadian High Arctic. Geobiology 9(4), 360–375 (2011)

    Google Scholar 

  • D.F. Gleeson, R.T. Pappalardo, M.S. Anderson, S.E. Grasby, R.E. Mielke, K.E. Wright, A.S. Templeton, Biosignature detection at an Arctic analog to Europa. Astrobiology 12(2), 135–150 (2012)

    ADS  Google Scholar 

  • C.R. Glein, J.H. Waite, The carbonate geochemistry of Enceladus’ Ocean. Geophys. Res. Lett. 47(3), e2019GL085885 (2020)

    ADS  Google Scholar 

  • C.R. Glein, F. Postberg, S.D. Vance, The geochemistry of Enceladus: composition and controls, in Enceladus and the Icy Moons of Saturn (University of Arizona Press, Tucson, 2018), pp. 39–56

    Google Scholar 

  • J.D. Goguen, B.J. Buratti, R.H. Brown, R.N. Clark, P.D. Nicholson, M.M. Hedman, R.R. Howell, C. Sotin, D.P. Cruikshank, K.H. Baines, K.J. Lawrence, J.R. Spencer, D.G. Blackburn, The temperature and width of an active fissure on Enceladus measured with Cassini vims during the 14 April 2012 south pole flyover. Icarus 226(1), 1128–1137 (2013). https://doi.org/10.1016/j.icarus.2013.07.012

    Article  ADS  Google Scholar 

  • K.M. Golden, S.F. Ackley, V.I. Lytle, The percolation phase transition in sea ice. Science 282(5397), 2238–2241 (1998)

    ADS  Google Scholar 

  • K.M. Golden, H. Eicken, A.L. Heaton, J. Miner, D.J. Pringle, J. Zhu, Thermal evolution of permeability and microstructure in sea ice. Geophys. Res. Lett. 34(16) (2007). https://doi.org/10.1029/2007GL030447

  • D.L. Goldsby, D.L. Kohlstedt, Superplastic deformation of ice: experimental observations. J. Geophys. Res., Solid Earth 106(B6), 11017–11030 (2001). https://doi.org/10.1029/2000JB900336

    Article  Google Scholar 

  • D.B. Goldstein, M.M. Hedman, M. Manga, M. Perry, J. Spitale, B. Teolis, Eceladus plume dynamics: from surface to space, in Enceladus and the Icy Moons of Saturn (University of Arizona Press, Tucson, 2018), pp. 175–194

    Google Scholar 

  • M.P. Golombek, Constraints on the expansion of Ganymede and the thickness of the lithosphere. J. Geophys. Res., Solid Earth 87(S01), A77–A83 (1982)

    ADS  Google Scholar 

  • M.P. Golombek, M.L. Allison, Sequential development of grooved terrain and polygons on Ganymede. Geophys. Res. Lett. 8(11), 1139–1142 (1981)

    ADS  Google Scholar 

  • J.C. Goodman, E. Lenferink, Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds. Icarus 221, 970–983 (2012)

    ADS  Google Scholar 

  • J.C. Goodman, R.T. Pierrehumbert, Glacial flow of floating marine ice in “Snowball Earth”. J. Geophys. Res., Oceans 108(C10), 3308 (2003)

    ADS  Google Scholar 

  • J.C. Goodman, G.C. Collins, J. Marshall, R.T. Pierrehumbert, Hydrothermal plume dynamics on Europa: implications for chaos formation. J. Geophys. Res. 109, E03008 (2004)

    ADS  Google Scholar 

  • A.M. Grannan, M. Le Bars, D. Cebron, J.M. Aurnou, Experimental study of global-scale turbulence in a librating ellipsoid. Phys. Fluids 26(12), 126601 (2014). https://doi.org/10.1063/1.4903003

    Article  ADS  Google Scholar 

  • A.M. Grannan, B. Favier, M. Le Bars, J.M. Aurnou, Tidally forced turbulence in planetary interiors. Geophys. J. Int. 208, 1690–1703 (2017)

    ADS  Google Scholar 

  • O. Grasset, M.K. Dougherty, A. Coustenis, E.J. Bunce, C. Erd, D. Titov, M. Blanc, A. Coates, P. Drossart, L.N. Fletcher et al., JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 1–21 (2013)

    ADS  Google Scholar 

  • R. Greeley, R. Sullivan, M.D. Coon, P.E. Geissler, B. Tufts, J.W. Head, R.T. Pappalardo, J.M. Moore, Terrestrial sea ice morphology: considerations for Europa. Icarus 135(1), 25–40 (1998). https://doi.org/10.1006/icar.1998.5977

    Article  ADS  Google Scholar 

  • R. Greenberg, P. Geissler, G.V. Hoppa, B.R. Tufts, D.D. Durda, R.T. Pappalardo, J.W. Head, R. Greeley, R. Sullivan, M.H. Carr, Tectonic processes on Europa: tidal stresses, mechanical response, and visible features. Icarus 135, 64–78 (1998)

    ADS  Google Scholar 

  • R. Greenberg, G.V. Hoppa, B.R. Tufts, P. Geissler, J. Riley, Chaos on Europa. Icarus 141, 263–286 (1999)

    ADS  Google Scholar 

  • S. Gulati, K. Richmond, C. Flesher, B.P. Hogan, A. Murarka, G. Kuhlmann, M. Sridharan, W.C. Stone, P.T. Doran, Toward autonomous scientific exploration of ice-covered lakes—field experiments with the ENDURANCE AUV in an Antarctic Dry Valley, in 2010 IEEE International Conference on Robotics and Automation (IEEE Press, New York, 2010), pp. 308–315

    Google Scholar 

  • N.P. Hammond, E.M. Parmenteir, A.C. Barr, Compaction and melt transport in ammonia-rich ice shells: implications for the evolution of Triton. J. Geophys. Res., Planets 123(12), 3105–3118 (2018)

    ADS  Google Scholar 

  • L. Han, A.P. Showman, Thermo-compositional convection in Europa’s icy shell with salinity. Geophys. Res. Lett. 32, L20201 (2005). https://doi.org/10.1029/2005GL023979

    Article  ADS  Google Scholar 

  • L. Han, A.P. Showman, Implications of shear heating and fracture zones for ridge formation on Europa. Geophys. Res. Lett. 35(3) (2008). https://doi.org/10.1029/2007GL031957

  • L. Han, A.P. Showman, Coupled convection and tidal dissipation in Europa’s ice shell. Icarus 207, 834–844 (2010)

    ADS  Google Scholar 

  • K.P. Hand, R.W. Carlson, Europa’s surface color suggests an ocean rich with sodium chloride. Geophys. Res. Lett. 42(9), 3174–3178 (2015)

    ADS  Google Scholar 

  • K.P. Hand, R.W. Carlson, C.F. Chyba, Energy, chemical disequilibrium, and geological constraints on Europa. Astrobiology 7(6), 1006–1022 (2007). https://doi.org/10.1089/ast.2007.0156

    Article  ADS  Google Scholar 

  • K.P. Hand, C.F. Chyba, J.C. Priscu, R.W. Carlson, K.H. Nealson, Astrobiology and the potential for life on Europa, in Europa (University of Arizona Press, Tucson, 2009), pp. 589–629

    Google Scholar 

  • K.P. Hand, A.E. Murray, J.B. Garvin, W.B. Brinckerhoff, B.C. Christner, K.S. Edgett, B.L. Ehlmann, C. German, A.G. Hayes, T.M. Hoehler, S.M. Horst, J.I. Lunine, K.H. Nealson, C. Paranicas, B.E. Schmidt, D.E. Smith, A.R. Rhoden, M.J. Russell, A.S. Templeton, P.A. Willis, R.A. Yingst, C.B. Phillips, M.L. Cable, K.L. Craft, A.E. Hofmann, T.A. Nordheim, R.T. Pappalardo (the Project Engineering Team), Report of the Europa Lander Science Definition Team. Tech. rep. Jet Propulsion Laboratory, California Institute of Technology (2017)

  • J. Hanley, J.B. Dalton III, V.F. Chevrier, C.S. Jamieson, R.S. Barrows, Reflectance spectra of hydrated chlorine salts: the effect of temperature with implications for Europa. J. Geophys. Res., Planets 119(11), 2370–2377 (2014)

    ADS  Google Scholar 

  • C.J. Hansen, L.W. Esposito, A.I.F. Stewart, B. Meinke, B. Wallis, J.E. Colwell, A.R. Hendrix, K. Larsen, W. Pryor, F. Tian, Water vapour jets inside the plume of gas leaving Enceladus. Nature 456, 477–479 (2008). https://doi.org/10.1038/nature07542

    Article  ADS  Google Scholar 

  • C.J. Hansen, L.W. Esposito, K.M. Aye, J.E. Colwell, A.R. Hendrix, G. Portyankina, D. Shemansky, Investigation of diurnal variability of water vapor in Enceladus’ plume by the Cassini ultraviolet imaging spectrograph. Geophys. Res. Lett. 44(2), 672–677 (2017). https://doi.org/10.1002/2016GL071853

    Article  ADS  Google Scholar 

  • C.J. Hansen, L.W. Esposito, J.E. Colwell, A.R. Hendrix, G. Portyankina, A.I.F. Stewart, R.A. West, The composition and structure of Enceladus’ plume from the complete set of Cassini UVIS occultation observations. Icarus 344, 113461 (2019)

    Google Scholar 

  • O. Hartkorn, J. Saur, Induction signals from Callisto’s ionosphere and their implications on a possible subsurface ocean. J. Geophys. Res. 122(11), 11,677–11,697 (2017)

    Google Scholar 

  • H.C.F.C. Hay, I. Matsuyama, Numerically modelling tidal dissipation with bottom drag in the oceans of Titan and Enceladus. Icarus 281, 342–356 (2017)

    ADS  Google Scholar 

  • H.C.F.C. Hay, I. Matsuyama, Nonlinear tidal dissipation in the subsurface oceans of Enceladus and other icy satellites. Icarus 319, 68–85 (2019)

    ADS  Google Scholar 

  • L. Hays, L. Archenbach, J. Bailey, R. Barnes, J. Barros, C. Bertka, P. Boston, E. Boyd, M. Cable, I. Chen et al., NASA Astrobiology Strategy (National Aeronautics and Space Administration, Washington, 2015). NASA

    Google Scholar 

  • J.W. Head, R.T. Pappalardo, Brine mobilization during lithospheric heating on Europa: implications for formation of chaos terrain, lenticula texture, and color variations. J. Geophys. Res., Planets 104(E11), 27143–27155 (1999). https://doi.org/10.1029/1999JE001062

    Article  ADS  Google Scholar 

  • J.W. Head, R.T. Pappalardo, R. Sullivan, Europa: morphological characteristics of ridges and triple bands from Galileo data (E4 and E6) and assessment of a linear diapirism model. J. Geophys. Res., Planets 104(E10), 24223–24236 (1999). https://doi.org/10.1029/1998JE001011

    Article  ADS  Google Scholar 

  • M.M. Hedman, C.M. Gosmeyer, P.D. Nicholson, C. Sotin, R.H. Brown, R.N. Clark, K.H. Baines, B.J. Buratti, M.R. Showalter, An observed correlation between plume activity and tidal stresses on Enceladus. Nature 500, 182–184 (2013). https://doi.org/10.1038/nature12371

    Article  ADS  Google Scholar 

  • M.M. Hedman, D. Dhingra, P. Nicholson, C. Hansen, G. Portyankina, S. Ye, Y. Dong, Spatial variations in the dust-to-gas ratio of Enceladus’ plume. Icarus 305, 123–138 (2018). https://doi.org/10.1016/j.icarus.2018.01.006

    Article  ADS  Google Scholar 

  • M.H. Heimpel, T. Gastine, J. Wicht, Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nat. Geosci. 9(1), 19 (2015)

    ADS  Google Scholar 

  • P. Helfenstein, Y-Shaped Discontinuity (Springer, New York, 2014), pp. 1–5

    Google Scholar 

  • P. Helfenstein, E.M. Parmentier, Patterns of fracture and tidal stresses due to nonsynchronous rotation: implications for fracturing on Europa. Icarus 61(2), 175–184 (1985)

    ADS  Google Scholar 

  • D.J. Hemingway, T. Mittal, Enceladus’s ice shell structure as a window on internal heat production. Icarus (2019). https://doi.org/10.1016/j.icarus.2019.03.011

    Article  Google Scholar 

  • D.J. Hemingway, F. Nimmo, H. Zebker, L. Iess, A rigid and weathered ice shell on Titan. Nature 500, 550–552 (2013). https://doi.org/10.1038/nature12400

    Article  ADS  Google Scholar 

  • M.C. Hendershott, Long waves and ocean tides, in Evolution of Physical Oceanography, ed. by B.A. Warren, C. Wunsch (MIT Press, Cambridge, 1981), pp. 292–341

    Google Scholar 

  • A.R. Hendrix, T.A. Hurford, L.M. Barge, M.T. Bland, J.S. Bowman, W. Brinckerhoff, B.J. Buratti, M.L. Cable, J. Castillo-Rogez, G.C. Collins, et al., The NASA roadmap to ocean worlds. Astrobiology 19(1), 1–27 (2019)

    ADS  Google Scholar 

  • C.A. Hibbitts, T.B. McCord, G.B. Hansen, Distributions of CO2 and SO2 on the surface of Callisto. J. Geophys. Res., Planets 105(E9), 22541–22557 (2000)

    ADS  Google Scholar 

  • C.A. Hibbitts, R.T. Pappalardo, G.B. Hansen, T.B. McCord, Carbon dioxide on Ganymede. J. Geophys. Res., Planets 108(E5), 5036 (2003)

    ADS  Google Scholar 

  • P.F. Hoffman, D.P. Schrag, The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14(3), 129–155 (2002)

    ADS  Google Scholar 

  • D.L. Hogenboom, Magnesium sulfate-water to 400 MPa using a novel piezometer: densities, phase equilibria, and planetological implications. Icarus 115(2), 258–277 (1995). https://doi.org/10.1006/icar.1995.1096

    Article  ADS  Google Scholar 

  • D.L. Hogenboom, J.S. Kargel, G.J. Consolmagno, T.C. Holden, L. Lee, M. Buyyounouski, The ammonia-water system and the chemical differentiation of icy satellites. Icarus 128(1), 171–180 (1997)

    ADS  Google Scholar 

  • S.M. Howell, R.T. Pappalardo, Band formation and ocean-surface interaction on Europa and Ganymede. Geophys. Res. Lett. 45(10), 4701–4709 (2018). https://doi.org/10.1029/2018GL077594

    Article  ADS  Google Scholar 

  • S.M. Howell, R.T. Pappalardo, Can Earth-like plate tectonics occur in ocean world ice shells? Icarus 322, 69–79 (2019)

    ADS  Google Scholar 

  • H.W. Hsu, F. Postberg, Y. Sekine, T. Shibuya, S.D. Kempf, M. Horányi, A. Juhász, N. Altobelli, K. Suzuki, Y. Masaki et al., Ongoing hydrothermal activities within Enceladus. Nature 519(7542), 207 (2015)

    ADS  Google Scholar 

  • P.J. Hudleston, Structures and fabrics in glacial ice: a review. J. Struct. Geol. 81, 1–27 (2015). https://doi.org/10.1016/j.jsg.2015.09.003

    Article  ADS  Google Scholar 

  • T.A. Hurford, P. Helfenstein, J.N. Spitale, Tidal control of jet eruptions on Enceladus as observed by Cassini ISS between 2005 and 2007. Icarus 220(2), 896–903 (2012)

    ADS  Google Scholar 

  • H. Hussmann, T. Spohn, Thermal-orbital evolution of io and Europa. Icarus 171(2), 391–410 (2004)

    ADS  Google Scholar 

  • H. Hussmann, T. Spohn, K. Wieczerkowski, Thermal equilibrium states of Europa’s ice shell: implications for internal ocean thickness and surface heat flow. Icarus 156, 143–151 (2002)

    ADS  Google Scholar 

  • H. Hussmann, F. Sohl, T. Spohn, Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185, 258–273 (2006)

    ADS  Google Scholar 

  • H. Hussmann, C. Sotin, J.I. Lunine, Interiors and evolution of icy satellites, in Treatise on Geophysics, vol. 10, ed. by G. Schubert 2nd edn. (Elsevier, Amsterdam, 2015), pp. 605–635

    Google Scholar 

  • L. Iess, N.J. Rappaport, R.A. Jacobson, P. Racioppa, D.J. Stevenson, P. Tortora, J.W. Armstrong, S.W. Asmar, Gravity field, shape, and moment of inertia of Titan. Science 327, 1367–1369 (2010)

    ADS  Google Scholar 

  • L. Iess, R.A. Jacobson, M. Ducci, D.J. Stevenson, J.I. Lunine, J.W. Armstrong, S.W. Asmar, P. Racioppa, N.J. Rappaport, P. Tortora, The tides of Titan. Science 337, 457–459 (2012)

    ADS  Google Scholar 

  • L. Iess, D.J. Stevenson, M. Parisi, D. Hemingway, R.A. Jacobson, J.I. Lunine, F. Nimmo, J.W. Armstrong, S.W. Asmar, M. Ducci et al., The gravity field and interior structure of Enceladus. Science 344(6179), 78–80 (2014)

    ADS  Google Scholar 

  • A.P. Ingersoll, S.P. Ewald, Decadal timescale variability of the Enceladus plumes inferred from Cassini images. Icarus 282, 260–275 (2017). https://doi.org/10.1016/j.icarus.2016.09.018

    Article  ADS  Google Scholar 

  • A.P. Ingersoll, A.A. Pankine, Subsurface heat transfer on Enceladus: conditions under which melting occurs. Icarus 206(2), 594–607 (2010). https://doi.org/10.1016/j.icarus.2009.09.015

    Article  ADS  Google Scholar 

  • R.A. Jacobson, P.G. Antreasian, J.J. Bordi, K.E. Criddle, R. Ionasescu, J.B. Jones, R.A. Mackenzie, M.C. Meek, D. Parcher, F.J. Pelletier, et al., The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. Astron. J. 132(6), 2520 (2006)

    ADS  Google Scholar 

  • M.F. Jansen, The turbulent circulation of a Snowball Earth ocean. J. Phys. Oceanogr. 46(6), 1917–1933 (2016)

    ADS  Google Scholar 

  • R. Jaumann, R.L. Kirk, R.D. Lorenz, R.M.C. Lopes, E. Stofan, E.P. Turtle, H.W. Keller, C.A. Wood, C. Sotin, L.A. Soderblom et al., Geology and surface processes on Titan, in Titan from Cassini-Huygens (Springer, Berlin, 2009), pp. 75–140

    Google Scholar 

  • A. Jenkins, The role of meltwater advection in the formulation of conservative boundary conditions at an ice-ocean interface. J. Phys. Oceanogr. 31, 285–296 (2010)

    ADS  Google Scholar 

  • X. Jia, M.G. Kivelson, K.K. Khurana, W.S. Kurth, Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. Nat. Astron. 2, 459–464 (2018). https://doi.org/10.1038/s41550-018-0450-z

    Article  ADS  Google Scholar 

  • B.C. Johnson, R.Y. Sheppard, A.C. Pascuzzo, E.A. Fisher, S.E. Wiggins, Porosity and salt content determine if subduction can occur in Europa’s ice shell. J. Geophys. Res., Planets 122(12), 2765–2778 (2017)

    ADS  Google Scholar 

  • S.A. Johnston, L.G.J. Montési, Formation of ridges on Europa above crystallizing water bodies inside the ice shell. Icarus 237, 190–201 (2014). https://doi.org/10.1016/j.icarus.2014.04.026

    Article  ADS  Google Scholar 

  • B. Journaux, K. Kalousová, C. Sotin, G Tobie, S.D. Vance, J. Saur, O. Bollengier, L. Noack, T. Rückriemen-Bez, T. Van Hoolst et al., High-pressure ices in large ocean worlds. Space Sci. Rev. 216(1), 7 (2020)

    ADS  Google Scholar 

  • S.D. Kadel, S.A. Fagents, R. Greeley (GS Team), Trough-bounding ridge pairs on Europa: considerations for an endogenic model of formation, in Lunar and Planetary Institute Science Conference Abstracts, vol. 29 (1998), p. p 1078

    Google Scholar 

  • S.D. Kadel, F.C. Chuang, R. Greeley, J.M. Moore, Geological history of the Tyre region of Europa: a regional perspective on Europan surface features and ice thickness. J. Geophys. Res., Planets 105(E9), 22657–22669 (2000). https://doi.org/10.1029/1999JE001203

    Article  ADS  Google Scholar 

  • K. Kalousová, C. Sotin, Melting in high-pressure ice layers of large ocean worlds – implications for volatiles transport. Geophys. Res. Lett. 45(16), 8096–8103 (2018). https://doi.org/10.1029/2018GL078889

    Article  ADS  Google Scholar 

  • K. Kalousová, C. Sotin, Dynamics of Titan’s high-pressure ice layer. Earth. Planet. Sci. Lett. (2020) https://doi.org/10.1016/j.epsl.2020.116416

    Article  Google Scholar 

  • K. Kalousová, O. Souček, G. Tobie, G. Choblet, O. Čadek, Ice melting and downward transport of meltwater by two-phase flow in Europa’s ice shell. J. Geophys. Res., Planets 119, 532–549 (2014). https://doi.org/10.1002/2013JE004563

    Article  ADS  Google Scholar 

  • K. Kalousová, O. Souček, G. Tobie, G. Choblet, O. Čadek, Water generation and transport below Europa’s strike-slip faults. J. Geophys. Res., Planets 121, 2444–2462 (2016). https://doi.org/10.1002/2016JE005188

    Article  ADS  Google Scholar 

  • K. Kalousová, C. Sotin, G. Choblet, G. Tobie, O. Grasset, Two-phase convection in Ganymede’s high-pressure ice layer – implications for its geological evolution. Icarus 299, 133–147 (2018). https://doi.org/10.1016/j.icarus.2017.07.018

    Article  ADS  Google Scholar 

  • J.S. Kargel, Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94(2), 368–390 (1991)

    ADS  Google Scholar 

  • J.S. Kargel, J.Z. Kaye, J.W. Head III, G.M. Marion, R. Sassen, J.K. Crowley, O. Prieto-Ballesteros, S.A. Grant, D.L. Hogenboom, Europa’s crust and ocean: origin, composition, and the prospects for life. Icarus 148(1), 226–265 (2000)

    ADS  Google Scholar 

  • S.A. Kattenhorn, L.M. Prockter, Evidence for subduction in the ice shell of Europa. Nat. Geosci. 7(10), 762 (2014)

    ADS  Google Scholar 

  • D.S. Kelley, J.A. Karson, D.K. Blackman, G.L. FruÈh-Green, D.A. Butterfield, M.D. Lilley, E.J. Olson, M.O. Schrenk, K.K. Roe, G.T. Lebon et al., An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 n. Nature 412(6843), 145–149 (2001)

    ADS  Google Scholar 

  • S. Kempf, M. Horányi, H.W. Hsu, T.W. Hill, A. Juhász, H.T. Smith, Saturn’s diffuse E ring and its connection with Enceladus, in Enceladus and the Icy Moons of Saturn (University of Arizona Press, Tucson, 2018), pp. 195–210

    Google Scholar 

  • R.R. Kerswell, Elliptical instability. Annu. Rev. Fluid Mech. 34(1), 83–113 (2002). https://doi.org/10.1146/annurev.fluid.34.081701.171829

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Kerswell, W.V.R. Malkus, Tidal instability as the source for Io’s magnetic signature. Geophys. Res. Lett. 25(5), 603–606 (1998)

    ADS  Google Scholar 

  • N. Khawaja, F. Postberg, J. Hillier, F. Klenner, S. Kempf, L. Nölle, R. Reviol, R. Srama, Low mass organic compounds in Enceladean ice grains. Mon. Not. R. Astron. Soc. 489(4), 5231–5243 (2019)

    ADS  Google Scholar 

  • K.K. Khurana, M.G. Kivelson, D.J. Stevenson, G. Schubert, C.T. Russell, R.J. Walker, C. Polanskey, Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395, 777–780 (1998)

    ADS  Google Scholar 

  • K.K. Khurana, M.G. Kivelson, C.T. Russell, Searching for liquid water in Europa by using surface observatories. Astrobiology 2(1), 93–103 (2002)

    ADS  Google Scholar 

  • P.W. Kimball, E.B. Clark, M. Scully, K. Richmond, C. Flesher, L.E. Lindzey, J. Harman, K. Huffstutler, J. Lawrence, S. Lelievre et al., The ARTEMIS under-ice AUV docking system. J. Field Robot. 35(2), 299–308 (2018)

    Google Scholar 

  • W.B.M. McKinnon, H. Melosh, Evolution of planetary lithospheres: evidence from multiringed structures on Ganymede and Callisto. Icarus 44(2), 454–471 (1980). https://doi.org/10.1016/0019-1035(80)90037-8

    Article  ADS  Google Scholar 

  • E.S. Kite, A.M. Rubin, Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes. Proc. Natl. Acad. Sci. 113(15), 3972–3975 (2016). https://doi.org/10.1073/pnas.1520507113

    Article  ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, M. Volwerk, The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002)

    ADS  Google Scholar 

  • M.W. Klaser, J. Gross, S. Tindall, R.W. Schlische, C.J. Potter, Europa’s ice tectonics: new insights from physical wax experiments with implications for subduction initiation and global resurfacing processes. Icarus 321, 593–607 (2019)

    ADS  Google Scholar 

  • A. Kovacs, A.J. Gow, Brine infiltration in the McMurdo Ice Shelf, McMurdo Sound, Antarctica. J. Geophys. Res. 80(15), 1957–1961 (1975)

    ADS  Google Scholar 

  • R.G. Kraus, L.E. Senft, S.T. Stewart, Impacts onto H2O ice: scaling laws for melting, vaporization, excavation, and final crater size. Icarus 214, 724–738 (2011). https://doi.org/10.1016/j.icarus.2011.05.016

    Article  ADS  Google Scholar 

  • O.L. Kuskov, V.A. Kronrod, Core sizes and internal structure of Earth’s and Jupiter’s satellites. Icarus 151(2), 204–227 (2001)

    ADS  Google Scholar 

  • J. Kvorka, C. Cadek, G. Tobie, G. Choblet, Does Titan’s long-wavelength topography contain information about subsurface ocean dynamics? Icarus 310, 149–164 (2018)

    ADS  Google Scholar 

  • V. Lainey, O. Karatekin, J. Desmars, S. Charnoz, J.E. Arlot, N. Emelyanov, C. Le Poncin-Lafitte, S. Mathis, F. Remus, G. Tobie et al., Strong tidal dissipation in Saturn and constraints on Enceladus’ thermal state from astrometry. Astrophys. J. 752(1), 14 (2012)

    ADS  Google Scholar 

  • J. Lawrence, B.E. Schmidt, M.R. Meister, D. Dichek, C. Ramey, B. Hurwitz, A. Spears, A. Mullen, F.E. Bryson, J.J. Lutz et al., Life under ice: Antarctic Ocean world analogs with HROV icefin and RISE UP, in AGUFM 2018 (2018). P21E-3402

    Google Scholar 

  • M. Le Bars, D. Cebron, P. Le Gal, Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163–193 (2015)

    ADS  MathSciNet  Google Scholar 

  • C.M. Lee, D.L. Rudnick, Underwater gliders, in Observing the Oceans in Real Time (Springer, Berlin, 2018), pp. 123–139

    Google Scholar 

  • A. Lefevre, G. Tobie, G. Choblet, O. Čadek, Structure and dynamics of Titan’s outer icy shell constrained from Cassini data. Icarus 237, 16–28 (2014). https://doi.org/10.1016/j.icarus.2014.04.006

    Article  ADS  Google Scholar 

  • D. Lemasquerier, A.M. Grannan, J. Vidal, D. Cébron, B. Favier M. Le Bars, J.M. Aurnou, Libration-driven flows in ellipsoidal shells. J. Geophys. Res., Planets 122(9), 1926–1950 (2017)

    ADS  Google Scholar 

  • E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0. National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2007)

  • E.L. Lewis, R.G. Perkin, Ice pumps and their rates. J. Geophys. Res. 91, 11756–11762 (1986)

    ADS  Google Scholar 

  • N. Ligier, F. Poulet, J. Carter, R. Brunetto, F. Gourgeot, VLT/SINFONI observations of Europa: new insights into the surface composition. Astron. J. 151(6), 163 (2016). https://doi.org/10.3847/0004-6256/151/6/163

    Article  ADS  Google Scholar 

  • Y. Liu, W.R. Peltier, A carbon cycle coupled climate model of Neoproterozoic glaciation: Influence of continental configuration on the formation of a “soft snowball”. J. Geophys. Res., Atmos. 115(D17) (2010). https://doi.org/10.1029/2009JD013082

  • M.S. Longuet-Higgins, The eigenfunctions of Laplace’s tidal equations over a sphere. Philos. Trans. R. Soc. Lond. A 262(1132), 511–607 (1968). https://doi.org/10.1098/rsta.1968.0003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.P. Lowell, M. DuBose, Hydrothermal systems on Europa. Geophys. Res. Lett. 32, L05202 (2005)

    ADS  Google Scholar 

  • J. Luan, Titan’s dynamic love number implies stably-stratified ocean (2019). ArXiv preprint. arXiv:1905.03802

  • B.K. Lucchita, Grooved terrain on Ganymede. Icarus 44(2), 481–501 (1980)

    ADS  Google Scholar 

  • B.K. Lucchitta, L.A. Soderblom, The geology of Europa, in Satellites of Jupiter, ed. by D. Morrison (University of Arizona Press, Tucson, 1982), pp. 521–555

    Google Scholar 

  • J.I. Lunine, N. Artemieva, G. Tobie, Impact cratering on Titan: hydrocarbons versus water, in Lunar and Planetary Science Conference, Lunar and Planetary Science Conference, vol. 41 (2010), p. 1537

    Google Scholar 

  • J.I. Lunine, A. Coustenis, G. Mitri, G. Tobie, F. Tosi, Future exploration of Enceladus and other saturnian moons, in Enceladus and the Icy Moons of Saturn (University of Arizona Press, Tucson, 2018), pp. 453–468

    Google Scholar 

  • J.I. Lunine M.L. Cable, S.M. Hörst, M. Rahm, The astrobiology of Titan, in Planetary Astrobiology, ed. by V.S. Meadows, G. Arney, D. DesMarais, B.E. Schmidt (University of Arizona Press, Tucson, 2019). (In production)

    Google Scholar 

  • L.R.M. Maas, Wave attractors: linear yet nonlinear. Int. J. Bifurc. Chaos 15(09), 2757–2782 (2005)

    MathSciNet  MATH  Google Scholar 

  • B.A. Magee, J.H. Waite, Neutral gas composition of Enceladus’ plume – model parameter insights from Cassini-INMS, in Lunar and Planetary Institute Science Conference Abstracts, vol. 48 (2017), p. 2974

    Google Scholar 

  • W.V.R. Malkus, Energy sources for planetary dynamos, in Lectures on Solar and Planetary Dynamos, ed. by M.R.E. Proctor, A.D. Gilbert (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  • M. Manga, C. Michaut, Formation of lenticulae on Europa by saucer-shaped sills. Icarus 286, 261–269 (2017). https://doi.org/10.1016/j.icarus.2016.10.009

    Article  ADS  Google Scholar 

  • M. Manga, A. Sinton, Formation of bands and ridges on Europa by cyclic deformation: Insights from analogue wax experiments. J. Geophys. Res., Planets 109(E9) (2004). https://doi.org/10.1029/2004JE002249

  • M. Manga, C.Y. Wang, Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophys. Res. Lett. 34(7) (2007). https://doi.org/10.1029/2007GL029297

  • I. Matsuyama, Tidal dissipation in the oceans of icy satellites. Icarus 242, 11–18 (2014)

    ADS  Google Scholar 

  • I. Matsuyama, M. Beuthe, H.C.F.C. Hay, F. Nimmo, S. Kamata, Ocean tidal heating in icy satellites with solid shells. Icarus 312, 208–230 (2018)

    ADS  Google Scholar 

  • T.B. McCord, G. Teeter, G.B. Hansen, M.T. Sieger, T.M. Orlando, Brines exposed to Europa surface conditions. J. Geophys. Res., Planets 107(E1) (2002). https://doi.org/10.1029/2000JE001453

  • T.J. McDougall, P.M. Barker, Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG, vol. 127 (2011), p. 1–28

    Google Scholar 

  • W.B. McKinnon, Convective instability in Europa’s floating ice shell. Geophys. Res. Lett. 26, 951–954 (1999)

    ADS  Google Scholar 

  • W.B. McKinnon, On convection in ice I shells of outer solar system bodies, with detailed application to Callisto. Icarus 183(2), 435–450 (2006). https://doi.org/10.1016/j.icarus.2006.03.004

    Article  ADS  Google Scholar 

  • W.B. McKinnon, Effect of Enceladus’s rapid synchronous spin on interpretation of Cassini gravity. Geophys. Res. Lett. 42(7), 2137–2143 (2015)

    ADS  Google Scholar 

  • W.B. McKinnon, M.E. Zolensky, Sulfate content of Europa’s ocean and shell: evolutionary considerations and some geological and astrobiological implications. Astrobiology 3(4), 879–897 (2003)

    ADS  Google Scholar 

  • M. Meister, D. Dichek, A. Spears, B. Hurwitz, C. Ramey, J. Lawrence, K. Philleo, J. Lutz, J. Lawrence, B.E. Schmidt, Icefin: redesign and 2017 Antarctic field deployment, in OCEANS 2018 MTS/IEEE Charleston (IEEE Press, New York, 2018), pp. 1–5

    Google Scholar 

  • H.J. Melosh, Impact Cratering: A Geologic Process (Oxford University Press/Clarendon Press, New York/Oxford, 1989)

    Google Scholar 

  • H.J. Melosh, A.G. Ekholm, A.P. Showman, R.D. Lorenz, The temperature of Europa’s subsurface water ocean. Icarus 168, 498–502 (2004)

    ADS  Google Scholar 

  • L. Mével, E. Mercier, Large-scale doming on Europa: a model of formation of thera macula. Planet. Space Sci. 55(7), 915–927 (2007). https://doi.org/10.1016/j.pss.2006.12.001

    Article  ADS  Google Scholar 

  • C. Michaut, M. Manga, Domes, pits, and small chaos on Europa produced by water sills. J. Geophys. Res., Planets 119(3), 550–573 (2014). https://doi.org/10.1002/2013JE004558

    Article  ADS  Google Scholar 

  • J.A. Mikucki, P.A. Lee, D. Ghosh, A.M. Purcell, A.C. Mitchell, K.D. Mankoff, A.T. Fisher, S. Tulaczyk, S.P. Carter, M.R. Siegfried et al., Subglacial Lake Whillans microbial biogeochemistry: a synthesis of current knowledge. Philos. Trans. R. Soc. Lond. A 374(2059), 20140290 (2016)

    ADS  Google Scholar 

  • J.W. Miles, On Laplace’s tidal equations. J. Fluid Mech. 66(2), 241–260 (1974). https://doi.org/10.1017/S0022112074000176

    Article  ADS  MATH  Google Scholar 

  • K.E. Miller, C.R. Glein, J.H. Waite, S.J. Bolton, Using D/H ratio of water and volatile organics to constrain thermogenic processes inside ice-rock bodies, in Lunar and Planetary Science Conference, vol. 50 (2019)

    Google Scholar 

  • G. Mitri, A.P. Showman, Convective-conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: implications for Europa. Icarus 177(2), 447–460 (2005). https://doi.org/10.1016/j.icarus.2005.03.019

    Article  ADS  Google Scholar 

  • G. Mitri, M.T. Bland, A.P. Showman, J. Radebaugh, B. Stiles, R. Lopes, J.I. Lunine, R.T. Pappalardo, Mountains on Titan: Modeling and observations. J. Geophys. Res., Planets 115(E10) (2010). https://doi.org/10.1029/2010JE003592

  • G. Mitri, R. Meriggiola, A. Hayes, A. Lefevre, G. Tobie, A. Genova, J.I. Lunine, H. Zebker, Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236, 169–177 (2014)

    ADS  Google Scholar 

  • J. Monteux, G.S. Collins, G. Tobie, G. Choblet, Consequences of large impacts on Enceladus’ core shape. Icarus 264, 300–310 (2016). https://doi.org/10.1016/j.icarus.2015.09.034

    Article  ADS  Google Scholar 

  • J.M. Moore, P.M. Schenk, L.S. Bruesch, E. Asphaug, W.B. McKinnon, Large impact features on middle-sized icy satellites. Icarus 171(2), 421–443 (2004). https://doi.org/10.1016/j.icarus.2004.05.009

    Article  ADS  Google Scholar 

  • L.N. Moresi, V.S. Solomatov, Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7(9), 2154–2162 (1995). https://doi.org/10.1063/1.868465

    Article  ADS  MATH  Google Scholar 

  • W.H. Munk, Once again: once again—tidal friction. Prog. Oceanogr. 40(1), 7–35 (1997). https://doi.org/10.1016/S0079-6611(97)00021-9. Part of special issue: Tidal Science In Honour of David E. Cartwright

    Article  ADS  Google Scholar 

  • S.L. Murchie, J.W. Head, Geologic map of the Philus Sulcus (Jg–4) quadrangle of Ganymede. U S Geol Surv Map I-1966 (1989)

  • S.L. Murchie, J.W. Head, J.B. Plescia, Tectonic and volcanic evolution of dark terrain and its implications for the internal structure and evolution of Ganymede. J. Geophys. Res., Solid Earth 95(B7), 10743–10768 (1990)

    Google Scholar 

  • A.E. Murray, F. Kenig, C.H. Fritsen, C.P. McKay, K.M. Cawley, R. Edwards, E. Kuhn, D.M. McKnight, N.E. Ostrom, V. Peng et al., Microbial life at -13 C in the brine of an ice-sealed Antarctic lake. Proc. Natl. Acad. Sci. 109(50), 20626–20631 (2012)

    ADS  Google Scholar 

  • K. Nagel, D. Breuer, T. Spohn, A model for the interior structure, evolution, and differentiation of Callisto. Icarus 169(2), 402–412 (2004)

    ADS  Google Scholar 

  • M. Nakajima, A.P. Ingersoll, Controlled boiling on Enceladus: 1. Model of the vapor-driven jets. Icarus 272, 309–318 (2016). https://doi.org/10.1016/j.icarus.2016.02.027

    Article  ADS  Google Scholar 

  • A. Néri, F. Guyot, B. Reynard, C. Sotin, A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn. Earth Planet. Sci. Lett. 530, 115920 (2020)

    Google Scholar 

  • F.M. Neubauer, The sub-Alfvenic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res. 103(E9), 19843–19866 (1998)

    ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, S.J. Bauer, G.R. Carignan, J.E. Demick, R.L. Frost, D. Gautier, J.A. Haberman, D.N. Harpold, D.M. Hunten, G. Israel, J.I. Lunine, W.T. Kasprzak, T.C. Owen, M. Paulkovich, F. Raulin, E. Raaen, S.H. Way The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 779–784 (2005). https://doi.org/10.1038/nature04122

    Article  ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, J.E. Demick, D. Gautier, J.A. Haberman, D.N. Harpold, W.T. Kasprzak, J.I. Lunine, T.C. Owen, F. Raulin, Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res., Planets 115(E12) (2010). https://doi.org/10.1029/2010JE003659

  • F. Nimmo, B.G. Bills, Shell thickness variations and the long-wavelength topography of Titan. Icarus 208(2), 896–904 (2010)

    ADS  Google Scholar 

  • F. Nimmo, E. Gaidos, Strike-slip motion and double ridge formation on Europa. J. Geophys. Res., Planets 107(E4), 5 (2002)

    Google Scholar 

  • F. Nimmo, P.C. Thomas, R.T. Pappalardo, W.B. Moore, The global shape of Europa: constraints on lateral shell thickness variations. Icarus 191, 183–192 (2007)

    ADS  Google Scholar 

  • F. Nimmo, B.G. Bills, P.C. Thomas, Geophysical implications of the long-wavelength topography of the saturnian satellites. J. Geophys. Res., Planets 116(E11) (2011). https://doi.org/10.1029/2011JE003835

  • F. Nimmo, C. Porco, C. Mitchell, Tidally modulated eruptions on Enceladus: Cassini iss observations and models. Astron. J. 148(3), 46 (2014)

    ADS  Google Scholar 

  • F. Nimmo, D.P. Hamilton, W.B. McKinnon, P.M. Schenk, R.P. Binzel, C.J. Bierson, R.A. Beyer, J.M. Moore, S.A. Stern, H.A. Weaver et al., Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540(7631), 94–96 (2016)

    ADS  Google Scholar 

  • F. Nimmo, A.C. Barr, M. Běhounková, W.B. McKinnon, The thermal and orbital evolution of Enceladus: observational constraints and models, in Enceladus and the Icy Moons of Saturn, ed. by P.M. Schenk et al. (University of Arizona Press, Tucson, 2018), pp. 79–94

    Google Scholar 

  • M. Ogawa, Two-stage evolution of the Earth’s mantle inferred from numerical simulation of coupled magmatism-mantle convection system with tectonic plates. J. Geophys. Res., Solid Earth 119(3), 2462–2486 (2014). https://doi.org/10.1002/2013JB010315

    Article  ADS  Google Scholar 

  • C. O’Neill, F. Nimmo, The role of episodic overturn in generating the surface geology and heat flow on Enceladus. Nat. Geosci. 3(2), 88–91 (2010)

    ADS  Google Scholar 

  • L. Paganini, G.L. Villanueva, L. Roth, A.M. Mandell, T.A. Hurford, K.D. Retherford, M.J. Mumma, A measurement of water vapour amid a largely quiescent environment on Europa. Nat. Astron. 4, 266–272 (2020)

    ADS  Google Scholar 

  • R.T. Pappalardo, R.J. Sullivan, Evidence for separation across a gray band on Europa. Icarus 123(2), 557–567 (1996). https://doi.org/10.1006/icar.1996.0178

    Article  ADS  Google Scholar 

  • R.T. Pappalardo, J.W. Head, R. Greeley, R.J. Sullivan, C. Pilcher, G. Schubert, W.B. Moore, M.H. Carr, J.M. Moore, M.J.S. Belton, D.L. Goldsby, Geological evidence for solid-state convection in Europa’s ice shell. Nature 391, 365–368 (1998)

    ADS  Google Scholar 

  • R.T. Pappalardo, M.J.S. Belton, H.H. Breneman, M.H. Carr, C.R. Chapman, G.C. Collins, T. Denk, S. Fagents, P.E. Geissler, B. Giese et al., Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res. 104(E10), 24015–24055 (1999)

    ADS  Google Scholar 

  • R.T. Pappalardo, G.C. Collins, J.W. Head, P. Helfenstein, T.B. McCord, J.M. Moore, L.M. Prockter, P.M. Schenk, J.R. Spencer, Geology of Ganymede, in Jupiter, ed. by F.D. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004), pp. 363–396

    Google Scholar 

  • R.T. Pappalardo, S.D. Vance, F. Bagenal, B.G. Bills, D.L. Blaney, D.D. Blankenship, W.B. Brinckerhoff, J.E.P. Connerney, K.P. Hand, T.M. Hoehler et al., Science potential from a Europa lander. Astrobiology 13(8), 740–773 (2013)

    ADS  Google Scholar 

  • C. Paranicas, J.F. Cooper, H.B. Garrett, R.E. Johnson, S.J. Sturner, Europa’s radiation environment and its effects on the surface, in Europa (University of Arizona Press, Tucson, 2009), pp. 529–544

    Google Scholar 

  • M.A. Pasek, R. Greenberg, Acidification of Europa’s subsurface ocean as a consequence of oxidant delivery. Astrobiology 12(2), 151–159 (2012)

    ADS  Google Scholar 

  • G.W. Patterson, G.C. Collins, J.W. Head, R.T. Pappalardo, L.M. Prockter, B.K. Lucchitta, J.P. Kay, Global geological mapping of Ganymede. Icarus 207(2), 845–867 (2010)

    ADS  Google Scholar 

  • G.W. Patterson, S.A. Kattenhorn, P. Helfenstein, G.C. Collins, R.T. Pappalardo, The geology of Enceladus, in Enceladus and the Icy Moons of Saturn (University of Arizona Press, Tucson, 2018), pp. 95–126

    Google Scholar 

  • M. Pauer, S. Musiol, D. Breuer, Gravity signals on Europa from silicate shell density variations. J. Geophys. Res., Planets 115(E12) (2010). https://doi.org/10.1029/2010JE003595

  • D.A. Peddinti, A.K. McNamara, Dynamical investigation of a thickening ice-shell: Implications for the icy moon Europa. Icarus 329, 251–269 (2019)

    ADS  Google Scholar 

  • J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1987)

    MATH  Google Scholar 

  • C.C. Porco, P. Helfenstein, P.C. Thomas, A.P. Ingersoll, J. Wisdom, R.A. West, G. Neukum, T. Denk, R. Wagner, T. Roatsch et al., Cassini observes the active south pole of Enceladus. Science 311(5766), 1393–1401 (2006)

    ADS  Google Scholar 

  • C.C. Porco, D. DiNino, F. Nimmo, How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related. Astron. J. 148 (2014). https://doi.org/10.1088/0004-6256/148/3/45

  • F. Postberg, S. Kempf, J. Hillier, R. Srama, S. Green, N. McBride, E. Grün, The E-ring in the vicinity of Enceladus: II. Probing the moon’s interior—the composition of E-ring particles. Icarus 193(2), 438–454 (2008). https://doi.org/10.1016/j.icarus.2007.09.001

    Article  ADS  Google Scholar 

  • F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck, R. Srama, Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009). https://doi.org/10.1038/nature08046

    Article  ADS  Google Scholar 

  • F. Postberg, J. Schmidt, J. Hillier, S.D. Kempf, R. Srama, A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474(7353), 620 (2011)

    ADS  Google Scholar 

  • F. Postberg, R.N. Clark, C.J. Hansen, A.J. Coates, C.M.D. Ore, F. Scipioni, M.M. Hedman, J.H. Waite, Plume and surface composition of Enceladus, in Enceladus and the Icy Moons of Saturn (University of Arizona Press, Tucson, 2018a), pp. 129–162

    Google Scholar 

  • F. Postberg, N. Khawaja, B. Abel, G. Choblet, C.R. Glein, M.S. Gudipati, B.L. Henderson, H.W. Hsu, S. Kempf, F. Klenner, G. Moragas-Klostermeyer, B. Magee, L. Nölle, M. Perry, R. Reviol, J. Schmidt, R. Srama, F. Stolz, G. Tobie, M. Trieloff, J.H. Waite, Macromolecular organic compounds from the depths of Enceladus. Nature 558, 564–568 (2018b). https://doi.org/10.1038/s41586-018-0246-4

    Article  ADS  Google Scholar 

  • J.C. Priscu, B.C. Christner, Earth’s icy biosphere, in Microbial Diversity and Bioprospecting (Am. Soc. Microbiol., Washington, 2004), pp. 130–145

    Google Scholar 

  • J.C. Priscu, C.H. Fritsen, E.E. Adams, S.J. Giovannoni, H.W. Paerl, C.P. McKay, P.T. Doran, D.A. Gordon, B.D. Lanoil, J.L. Pinckney, Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280(5372), 2095–2098 (1998)

    ADS  Google Scholar 

  • L.M. Prockter, G.W. Patterson, Morphology and evolution of Europa’s ridges and bands, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 237–258

    Google Scholar 

  • L.M. Prockter, J.W. Head, R.T. Pappalardo, D.A. Senske, G. Neukum, R. Wagner, U. Wolf, J. Oberst, B. Giese, J.M. Moore et al., Dark terrain on Ganymede: geological mapping and interpretation of Galileo Regio at high resolution. Icarus 135(1), 317–344 (1998)

    ADS  Google Scholar 

  • L.M. Prockter, P.H. Figueredo, R.T. Pappalardo, J.W. Head, G.C. Collins, Geology and mapping of dark terrain on Ganymede and implications for grooved terrain formation. J. Geophys. Res., Planets 105(E9), 22519–22540 (2000)

    ADS  Google Scholar 

  • L.M. Prockter, J.W. Head III, R.T. Pappalardo, R.J. Sullivan, A.E. Clifton, B. Giese, R. Wagner, G. Neukum, Morphology of Europan bands at high resolution: a mid-ocean ridge-type rift mechanism. J. Geophys. Res., Planets 107(E5), 4 (2002). https://doi.org/10.1029/2000JE001458

    Article  Google Scholar 

  • L.C. Quick, B.D. Marsh, Heat transfer of ascending cryomagma on Europa. J. Volcanol. Geotherm. Res. 319, 66–77 (2016). https://doi.org/10.1016/j.jvolgeores.2016.03.018

    Article  ADS  Google Scholar 

  • L.C. Quick, L. Glaze, S.M. Baloga, Cryovolcanic emplacement of domes on Europa. Icarus 284, 477–488 (2017). https://doi.org/10.1016/j.icarus.2016.06.029

    Article  ADS  Google Scholar 

  • J.A. Rathbun, G.S.J. Musser, S.W. Squyres, Ice diapirs on Europa: implications for liquid water. Geophys. Res. Lett. 25, 4157–4160 (1998)

    ADS  Google Scholar 

  • J. Rekier, A. Trinh, S.A. Triana, V. Dehant, Internal energy dissipation in Enceladus’s ocean from tides and libration and the role of inertial waves. J. Geophys. Res., Planets 124, 2198–2212 (2019)

    ADS  Google Scholar 

  • R.T. Reynolds, S.W. Squyres, D.S. Colburn, C.P. McKay, On the habitability of Europa. Icarus 56(2), 246–254 (1983)

    ADS  Google Scholar 

  • R.T. Reynolds, C.P. McKay, J.F. Kasting, Europa, tidally heated oceans, and habitable zones around giant planets. Adv. Space Res. 7(5), 125–132 (1987)

    ADS  Google Scholar 

  • Y. Ricard, in Physics of Mantle Convection. Treatise on Geophysics, ed. by G. Schubert, D. Bercovici (Elsevier, Amsterdam, 2007), pp. 31–88

    Google Scholar 

  • M. Rieutord, Evolution of rotation in binaries: physical processes, in Symposium-International Astronomical Union, vol. 215 (Cambridge University Press, Cambridge, 2004), pp. 394–403

    Google Scholar 

  • M. Rieutord, B. Georgeot, L. Valdettaro, Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435, 103–144 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  • T. Roatsch, R. Jaumann, K. Stephan, P.C. Thomas, Cartographic mapping of the icy satellites using ISS and VIMS data, in Saturn from Cassini-Huygens (Springer, Berlin, 2009), pp. 763–781

    Google Scholar 

  • J.H. Roberts, The fluffy core of Enceladus. Icarus 258, 54–66 (2015)

    ADS  Google Scholar 

  • J.H. Roberts, F. Nimmo, Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus 194(2), 675–689 (2008)

    ADS  Google Scholar 

  • L. Roth, J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, F. Nimmo, Transient water vapor at Europa’s south pole. Science 343(6167), 171–174 (2014). https://doi.org/10.1126/science.1247051

    Article  ADS  Google Scholar 

  • M. Rovira-Navarro, M. Rieutord, T. Gerkema, L.R. Maas, W. van der Wal, B. Vermeersen, Do tidally-generated inertial waves heat the subsurface oceans of Europa and Enceladus? Icarus 321, 126–140 (2019)

    ADS  Google Scholar 

  • T. Rückriemen, D. Breuer, T. Spohn, Top-down freezing in a Fe–FeS core and Ganymede’s present-day magnetic field’. Icarus 307, 172–196 (2018)

    ADS  Google Scholar 

  • M.J. Russell, A.E. Murray, K.P. Hand, The possible emergence of life and differentiation of a shallow biosphere on irradiated icy worlds: the example of Europa. Astrobiology 17(12), 1265–1273 (2017)

    ADS  Google Scholar 

  • J. Saur, S. Duling, L. Roth, X. Jia, D.F. Strobel, P.D. Feldman, U.R. Christensen, K.D. Retherford, M.A. McGrath, F. Musacchio et al., The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. 120(3), 1715–1737 (2015)

    Google Scholar 

  • P.M. Schenk, W.B. McKinnon, Fault offsets and lateral crustal movement on Europa: evidence for a mobile ice shell. Icarus 79(1), 75–100 (1989). https://doi.org/10.1016/0019-1035(89)90109-7

    Article  ADS  Google Scholar 

  • P.M. Schenk, J.M. Moore, Volcanic constructs on Ganymede and Enceladus: Topographic evidence from stereo images and photoclinometry. J. Geophys. Res., Planets 100(E9), 19009–19022 (1995)

    ADS  Google Scholar 

  • P.M. Schenk, E.P. Turtle, Europa’s impact craters: probes of the icy shell, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 181–198

    Google Scholar 

  • P.M. Schenk, W.B. McKinnon, D. Gwynn, J.M. Moore, Flooding of Ganymede’s bright terrains by low-viscosity water-ice lavas. Nature 410(6824), 57 (2001)

    ADS  Google Scholar 

  • P.M. Schenk, C.R. Chapman, K. Zahnle, J.M. Moore, Ages and interiors: the cratering record of the Galilean satellites, in Jupiter: The Planet, Satellites and Magnetosphere, vol. 2 (Cambridge University Press, Cambridge, 2004), p. 427

    Google Scholar 

  • N. Schilling, F.M. Neubauer, J. Saur, Time-varying interaction of Europa with the Jovian magnetosphere: constraints on the conductivity of Europa’s subsurface ocean. Icarus 192, 41–55 (2007)

    ADS  Google Scholar 

  • B.E. Schmidt, The astrobiology of Europa and the Jovian Moons, in Planetary Astrobiology, ed. by V.S. Meadows, G. Arney, D. DesMarais, B.E. Schmidt (University of Arizona Press, Tucson, 2020), p. 185

    Google Scholar 

  • J. Schmidt, N. Brilliantov, F. Spahn, S. Kempf, Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451, 685–688 (2008). https://doi.org/10.1038/nature06491

    Article  ADS  Google Scholar 

  • B.E. Schmidt, D.D. Blankenship, G.W. Patterson, P.M. Schenk, Active formation of chaos terrain over shallow subsurface water on Europa. Nature 479, 502–505 (2011)

    ADS  Google Scholar 

  • B.E. Schmidt, J.D. Lawrence, M.R. Meister, D.J.G. Dicheck, B.C. Hurwitz, A. Spears, A.D. Mullen, P.M. Washam, F.E. Bryson, E. Quartini et al., Europa in our backyard: under ice robotic exploration of Antarctic analogs LPI Contrib. 2326, 1065 (2020)

    Google Scholar 

  • R.W. Schmitt, Double diffusion in oceanography. Annu. Rev. Fluid Mech. 26(1), 255–285 (1994)

    ADS  Google Scholar 

  • G. Schubert, J.D. Anderson, T. Spohn, W.B. McKinnon, Interior composition, structure and dynamics of the Galilean satellites, in Jupiter: The Planet, Satellites and Magnetosphere, (2004), pp. 281–306

    Google Scholar 

  • F. Scipioni, P. Schenk, F. Tosi, E. D’Aversa, R. Clark, J.P. Combe, C.D. Ore, Deciphering sub-micron ice particles on Enceladus surface. Icarus 290, 183–200 (2017). https://doi.org/10.1016/j.icarus.2017.02.012

    Article  ADS  Google Scholar 

  • Y. Sekine, T. Shibuya, F. Postberg, H.W. Hsu, K. Suzuki, Y. Masaki, T. Kuwatani, M. Mori, P.K. Hong, M. Yoshizaki, S. Tachibana, S. Sirono, High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015). https://doi.org/10.1038/ncomms9604

    Article  ADS  Google Scholar 

  • L.E. Senft, S.T. Stewart, Modeling the morphological diversity of impact craters on icy satellites. Icarus 214, 67–81 (2011). https://doi.org/10.1016/j.icarus.2011.04.015

    Article  ADS  Google Scholar 

  • SESAME program selections, Scientific Exploration Subsurface Access Mechanism for Europa (SESAME) Abstracts of selected proposals (NNH18ZDA001N) (2019). https://nspires.nasaprs.com/external/viewrepositorydocument/cmdocumentid=664490/solicitationId=%7B24ACEF00-C2AE-6179-001F-C9E1BB025436%7D/viewSolicitationDocument=1/SESAME%20Abstracts.pdf

  • M. Seufert, J. Saur, F.M. Neubauer, Multi-frequency electromagnetic sounding of the Galilean moons. Icarus 214(2), 477–494 (2011)

    ADS  Google Scholar 

  • T. Shank, C. German, C. Machado, A. Bowen, J. Drazen, P. Yancey, A. Jamieson, A. Rowden, M. Clark, T. Heyl et al., Ocean worlds analog systems in the hadal ocean: systematic examination of pressure, food supply, topography, and evolution on hadal life, in Ocean Worlds, vol. 2085 (2018)

    Google Scholar 

  • E.M. Shoemaker, B.K. Lucchitta, D.E. Wilhelms, J.B. Plescia, S.W. Squyres, The geology of Ganymede, in Satellites of Jupiter, ed. by D. Morrison (University of Arizona Press, Tucson, 1982), pp. 435–520

    Google Scholar 

  • A.P. Showman, R. Malhotra, Tidal evolution into the Laplace resonance and the resurfacing of Ganymede. Icarus 127(1), 93–111 (1997). https://doi.org/10.1006/icar.1996.5669

    Article  ADS  Google Scholar 

  • S.E. Smrekar, P. Lognonné, T. Spohn, W.B. Banerdt, D. Breuer, U. Christensen, V. Dehant, M. Drilleau, W. Folkner, N. Fuji et al., Pre-mission InSights on the interior of Mars. Space Sci. Rev. 215(1) (2018). https://doi.org/10.1007/s11214-018-0563-9

  • K.M. Soderlund, Ocean dynamics of outer solar system satellites. Geophy. Res. Lett. 46(15), 8700–8710 (2019)

    ADS  Google Scholar 

  • K.M. Soderlund, M.H. Heimpel, E.M. King, J.M. Aurnou, Turbulent models of ice giant internal dynamics: dynamos, heat transfer, and zonal flows. Icarus 224, 97–113 (2013)

    ADS  Google Scholar 

  • K.M. Soderlund, B.E. Schmidt, J. Wicht, D.D. Blankenship, Ocean-driven heating of Europa’s icy shell at low latitudes. Nat. Geosci. 7, 16–19 (2014)

    ADS  Google Scholar 

  • F. Sohl, T. Spohn, D. Breuer, K. Nagel, Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157, 104–119 (2002)

    ADS  Google Scholar 

  • F. Sohl, H. Hussmann, B. Schwentker, T. Spohn, R.D. Lorenz, Interior structure models and tidal Love numbers of Titan. J. Geophys. Res., Planets 108(E12), 5130 (2003)

    ADS  Google Scholar 

  • C. Sotin, J.W. Head, G. Tobie, Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting. Geophys. Res. Lett. 29(8), 1233 (2002). https://doi.org/10.1029/2001GL013884

    Article  ADS  Google Scholar 

  • C. Sotin, G. Tobie, J. Wahr, W.B. McKinnon, Tides and tidal heating on Europa, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009)

    Google Scholar 

  • O. Souček, J. Hron, M. Běhounková, O. Čadek, Effect of the tiger stripes on the deformation of Saturn’s moon Enceladus. Geophys. Res. Lett. 43(14), 7417–7423 (2016). https://doi.org/10.1002/2016GL069415

    Article  ADS  Google Scholar 

  • O. Souček, M. Běhounková, O. Čadek, J. Hron, G. Tobie, G. Choblet, Tidal dissipation in Enceladus’ uneven, fractured ice shell. Icarus 328, 218–231 (2019). https://doi.org/10.1016/j.icarus.2019.02.012

    Article  ADS  Google Scholar 

  • B.S. Southworth, S. Kempf, J. Schmidt, Modeling Europa’s dust plumes. Geophys. Res. Lett. 42(24), 10,541–10,548 (2015). https://doi.org/10.1002/2015GL066502

    Article  Google Scholar 

  • B.S. Southworth, S. Kempf, J. Spitale, Surface deposition of the Enceladus plume and the zenith angle of emissions. Icarus 319, 33–42 (2019). https://doi.org/10.1016/j.icarus.2018.08.024

    Article  ADS  Google Scholar 

  • F. Spahn, J. Schmidt, N. Albers, M. Hörning, M. Makuch, M. Seiß, S. Kempf, R. Srama, V. Dikarev, S. Helfert, G. Moragas-Klostermeyer, A.V. Krivov, M. Sremčević, A.J. Tuzzolino, T. Economou, E. Grün, Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311(5766), 1416–1418 (2006). https://doi.org/10.1126/science.1121375

    Article  ADS  Google Scholar 

  • W.B. Sparks, K.P. Hand, M.A. McGrath, E. Bergeron, M. Cracraft, S.E. Deustua, Probing for evidence of plumes on Europa with HST/STIS. Astrophys. J. 829(2), 121 (2016)

    ADS  Google Scholar 

  • W.B. Sparks, B.E. Schmidt, M.A. McGrath, K.P. Hand, J.R. Spencer, M. Cracraft, S.E. Deustua, Active cryovolcanism on Europa? Astrophys. J. Lett. 839(2), L18 (2017)

    ADS  Google Scholar 

  • N.A. Spaun, J.W. Head, G.C. Collins, L.M. Prockter, R.T. Pappalardo, Conamara Chaos Region, Europa: reconstruction of mobile polygonal ice blocks. Geophys. Res. Lett. 25(23), 4277–4280 (1998)

    ADS  Google Scholar 

  • N.A. Spaun, J.W. Head, R.T. Pappalardo et al. (GS Team), Scalloped depressions on Ganymede from Galileo (G28) very high resolution imaging, in Lunar and Planetary Science Conference, vol. 32 (2001)

    Google Scholar 

  • J.R. Spencer, F. Nimmo, A.P. Ingersoll, T.A. Hurford, E.S. Kite, A.R. Rhoden, J. Schmidt, C.J.A. Howett, Plume origins and plumbing: from ocean to surface, in Enceladus and the Icy Moons of Saturn (University of Arizona Press, Tucson, 2018), pp. 163–174

    Google Scholar 

  • J.N. Spitale, T.A. Hurford, A.R. Rhoden, E.E. Berkson, S.S. Platts, Curtain eruptions from Enceladus’ south-polar terrain. Nature 521, 57–60 (2015). https://doi.org/10.1038/nature14368

    Article  ADS  Google Scholar 

  • T. Spohn, G. Schubert, Oceans in the icy Galilean satellites of Jupiter? Icarus 161(2), 456–467 (2003)

    ADS  Google Scholar 

  • G. Steinbrügge, D.M. Schroeder, M.S. Haynes, H. Hussmann, C. Grima, D.D. Blankenship, Assessing the potential for measuring Europa’s tidal Love number h2 using radar sounder and topographic imager data. Earth Planet. Sci. Lett. 482, 334–341 (2018)

    ADS  Google Scholar 

  • W.C. Stone, B. Hogan, V. Siegel, S. Lelievre, C. Flesher, Progress towards an optically powered cryobot. Ann. Glaciol. 55(65), 2–13 (2014)

    ADS  Google Scholar 

  • R. Sullivan, R. Greeley, K. Homan, J. Klemaszewski, M.J.S. Belton, M.H. Carr, C.R. Chapman, R. Tufts, J.W. Head, R. Pappalardo, J. Moore, P. Thomas (the Galileo Imaging Team), Episodic plate separation and fracture infill on the surface of Europa. Nature 391, 371–373 (1998). https://doi.org/10.1038/34874

    Article  ADS  Google Scholar 

  • R. Tajeddine, K.M. Soderlund, P.C. Thomas, P. Helfenstein, M.M. Hedman, J.A. Burns, P.M. Schenk, True polar wander of Enceladus from topographic data. Icarus 295, 46–60 (2017)

    ADS  Google Scholar 

  • R.S. Taubner, K. Olsson-Francis, S.D. Vance, N.K. Ramkissoon, F. Postberg, J.P. de Vera, A. Antunes, E.C. Casas, Y. Sekine, L. Noack et al., Experimental and simulation efforts in the astrobiological exploration of exooceans. Space Sci. Rev. 216(1), 9 (2020)

    ADS  Google Scholar 

  • B.D. Teolis, M.E. Perry, C.J. Hansen, J.H. Waite, C.C. Porco, J.R. Spencer, C.J.A. Howett, Enceladus plume structure and time variability: comparison of Cassini observations. Astrobiology 17(9), 926–940 (2017). https://doi.org/10.1089/ast.2017.1647

    Article  ADS  Google Scholar 

  • P.C. Thomas, J.A. Burns, P. Helfenstein, S. Squyres, J. Veverka, C. Porco, E.P. Turtle, A. McEwen, T. Denk, B. Giese et al., Shapes of the saturnian icy satellites and their significance. Icarus 190(2), 573–584 (2007)

    ADS  Google Scholar 

  • P.C. Thomas, R. Tajeddine, M.S. Tiscareno, J.A. Burns, J. Joseph, T.J. Loredo, P. Helfenstein, C.C. Porco, Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016)

    ADS  Google Scholar 

  • R.E. Thomson, J.R. Delaney, Evidence for a weakly stratified Europan ocean sustained by seafloor heat flux. J. Geophys. Res. 106, 12355–12365 (2001)

    ADS  Google Scholar 

  • G. Tobie, G. Choblet, C. Sotin, Tidally heated convection: constraints on Europa’s ice shell thickness. J. Geophys. Res. 108(E11), 5124 (2003). https://doi.org/10.1029/2003JE002099

    Article  Google Scholar 

  • G. Tobie, O. Grasset, J.I. Lunine, A. Mocquet, C. Sotin, Titan’s internal structure inferred from a coupled thermal-orbital model. Icarus 175(2), 496–502 (2005). https://doi.org/10.1016/j.icarus.2004.12.007

    Article  ADS  Google Scholar 

  • G. Tobie, J.I. Lunine, C. Sotin, Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440(7080), 61 (2006)

    ADS  Google Scholar 

  • G. Tobie, O. Čadek, C. Sotin, Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus 196(2), 642–652 (2008)

    ADS  Google Scholar 

  • B.J. Travis, J. Palguta, G. Schubert, A whole-moon thermal history model of Europa: impact of hydrothermal circulation and salt transport. Icarus 218, 1006–1019 (2012)

    ADS  Google Scholar 

  • S.K. Trumbo, M. Brown, K.P. Hand, Sodium chloride on the surface of Europa. Sci. Adv. 5(6), eaaw7123 (2019)

    ADS  Google Scholar 

  • B. Tufts, R. Greenberg, G. Hoppa, P. Geissler, Lithospheric dilation on Europa. Icarus 146(1), 75–97 (2000). https://doi.org/10.1006/icar.2000.6369

    Article  ADS  Google Scholar 

  • E.P. Turtle, Finite-element modeling of large impact craters: Implications for the size of the Vredefort structure and the formation of multiple ring craters. Ph.D. dissertation, Univ. of Arizona, Tucson (1998)

  • E.P. Turtle, E. Pierazzo, Thickness of a Europan ice shell from impact crater simulations. Science 294, 1326–1328 (2001). https://doi.org/10.1126/science.1062492

    Article  ADS  Google Scholar 

  • E.P. Turtle, H.J. Melosh, C.B. Phillips, Tectonic modeling of the formation of Europan ridges, in EOS Trans. AGU, vol. 79 (1998), p. F541

    Google Scholar 

  • E.P. Turtle, J.W. Barnes, M.G. Trainer, R.D. Lorenz, S.M. MacKenzie, K.E. Hibbard, et al.Dragonfly: exploring Titan’s prebiotic organic chemistry and habitability. LPI Contrib. 1964, 1958 (2017)

    Google Scholar 

  • R.H. Tyler, Strong ocean tidal flow and heating on moons of the outer planets. Nature 456, 770–773 (2008)

    ADS  Google Scholar 

  • R.H. Tyler, Ocean tides heat Enceladus. Geophys. Res. Lett. 36(15), L15205 (2009). https://doi.org/10.1029/2009GL038300

    Article  ADS  Google Scholar 

  • R.H. Tyler, Comparative estimates of the heat generated by ocean tides on icy satellites in the outer Solar System. Icarus 243(Suppl. C), 358–385 (2014). https://doi.org/10.1016/j.icarus.2014.08.037

    Article  ADS  Google Scholar 

  • T. Van Hoolst, R.M. Baland, A. Trinh, The diurnal libration and interior structure of Enceladus. Icarus 277, 311–318 (2016)

    ADS  Google Scholar 

  • S.D. Vance, J.M. Brown, Layering and double-diffusion style convection in Europa’s ocean. Icarus 177, 506–514 (2005)

    ADS  Google Scholar 

  • S.D. Vance, J.M. Brown, Thermodynamic properties of aqueous MgSO4 to 800 MPa at temperatures from −20 to 100 C and concentrations to 2.5 mol kg−1 from sound speeds, with applications to icy world oceans. Geochim. Cosmochim. Acta 110, 176–189 (2013)

    ADS  Google Scholar 

  • S.D. Vance, J.C. Goodman, The structure and evolution of Europa’s ocean and ice shell in the presence of aqueous MgSO_4. LPI Contrib. 1719, 1877 (2013)

    ADS  Google Scholar 

  • S.D. Vance, M. Melwani Daswani, Serpentinite and the search for life beyond Earth. Philos. Trans. - Royal Soc., Math. Phys. Eng. Sci. 378(2165), 20180421 (2020). https://doi.org/10.1098/rsta.2018.0421

    Article  Google Scholar 

  • S.D. Vance, J. Harnmeijer, J. Kimura, H. Hussmann, B. DeMartin, J.M. Brown, Hydrothermal systems in small ocean planets. Astrobiology 7(6), 987–1005 (2007)

    ADS  Google Scholar 

  • S.D. Vance, M. Bouffard, M. Choukroun, C. Sotin, Ganymede’s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet. Space Sci. 96, 62–70 (2014)

    ADS  Google Scholar 

  • S.D. Vance, K.P. Hand, R.T. Pappalardo, Geophysical controls of chemical disequilibria in Europa. Geophys. Res. Lett. 43(10), 4871–4879 (2016)

    ADS  Google Scholar 

  • S.D. Vance, S. Kedar, M.P. Panning, S.C. Stähler, B.G. Bills, R.D. Lorenz, H.H. Huang, W.T. Pike, J.C. Castillo, P. Lognonné et al., Vital signs: seismology of icy ocean worlds. Astrobiology 18(1), 37–53 (2018). https://doi.org/10.1089/ast.2016.1612

    Article  ADS  Google Scholar 

  • S.D. Vance, M.P. Panning, S. Stahler, F. Cammarano, B.G. Bills, G. Tobie, S. Kamata, S. Kedar, C. Sotin, W.T. Pike, R.D. Lorenz, H.H. Huang, J.M. Jackson, B. Banerdt, Geophysical investigations of habitability in ice-covered ocean worlds. J. Geophys. Res. 123, 180–205 (2018)

    Google Scholar 

  • S.D. Vance, L.M. Barge, S.S.S. Cardoso, J.H.E. Cartwright, Self-assembling ice membranes on Europa: brinicle properties, field examples, and possible energetic systems in icy ocean worlds. Astrobiology 19(5), 685–695 (2019)

    ADS  Google Scholar 

  • A.K. Verma, J.L. Margot, Expected precision of Europa Clipper gravity measurements. Icarus 314, 35–49 (2018)

    ADS  Google Scholar 

  • T.H. Vu, R. Hodyss, M. Choukroun, P.V. Johnson, Chemistry of frozen sodium–magnesium–sulfate–chloride brines: implications for surface expression of Europa’s ocean composition. Astrophys. J. Lett. 816(2), L26 (2016)

    ADS  Google Scholar 

  • J.H. Waite, H. Niemann, R.V. Yelle, W.T. Kasprzak, T.E. Cravens, J.G. Luhmann, R.L. McNutt, W.H. Ip, D. Gell, V. De La Haye, I. Müller-Wodarg, B. Magee, N. Borggren, S. Ledvina, G. Fletcher, E. Walter, R. Miller, S. Scherer, R. Thorpe, J. Xu, B. Block, K. Arnett, Ion neutral mass spectrometer results from the first flyby of Titan. Science 308(5724), 982–986 (2005). https://doi.org/10.1126/science.1110652

    Article  ADS  Google Scholar 

  • J.H. Waite, M.R. Combi, W.H. Ip, T.E. Cravens, R.L. McNutt, W.T. Kasprzak, R.V. Yelle, J.G. Luhmann, H.B. Niemann, D. Gell, B.A. Magee, Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311(5766), 1419–1422 (2006)

    ADS  Google Scholar 

  • J.H. Waite, W.S. Lewis, B.A. Magee, J.I. Lunine, W.B. McKinnon, C.R. Glein, O. Mousis et al., Liquid water on Enceladus from observations of ammonia and 40 ar in the plume. Nature 460(7254), 487 (2009)

    ADS  Google Scholar 

  • J.H. Waite, C.R. Glein, R.S. Perryman, B.D. Teolis, B.A. Magee, G. Miller, J. Grimes, M.E. Perry, K.E. Miller, A. Bouquet, J.I. Lunine, T. Brockwell, S.J. Bolton, Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356(6334), 155–159 (2017). https://doi.org/10.1126/science.aai8703

    Article  ADS  Google Scholar 

  • C.C. Walker, B.E. Schmidt, Ice collapse over trapped water bodies on Enceladus and Europa. Geophys. Res. Lett. 42(3), 712–719 (2015). https://doi.org/10.1002/2014GL062405

    Article  ADS  Google Scholar 

  • S.G. Warren, R.E. Brandt, T.C. Grenfell, C.P. McKay, Snowball Earth: ice thickness on the tropical ocean. J. Geophys. Res. 107(C10), 3167 (2002)

    ADS  Google Scholar 

  • J. Weertman, On the sliding of glaciers. J. Glaciol. 3(21), 33–38 (1957)

    ADS  Google Scholar 

  • M.B. Weller, L. Fuchs, T.W. Becker, K.M. Soderlund, Convection in thin shells of icy satellites: effects of latitudinal surface temperature variations. J. Geophys. Res., Planets (2019). https://doi.org/10.1029/2018JE005799

    Article  Google Scholar 

  • E.H. Wilson, S.K. Atreya, Sensitivity studies of methane photolysis and its impact on hydrocarbon chemistry in the atmosphere of Titan. J. Geophys. Res., Planets 105(E8), 20263–20273 (2000). https://doi.org/10.1029/1999JE001221

    Article  ADS  Google Scholar 

  • A. Wilson, R.R. Kerswell, Can libration maintain Enceladus’s ocean? Earth Planet. Sci. Lett. 500, 41–46 (2018). https://doi.org/10.1016/j.epsl.2018.08.012

    Article  ADS  Google Scholar 

  • T.W. Wilson, L.A. Ladino, P.A. Alpert, M.N. Breckels, I.M. Brooks, J. Browse, S.M. Burrows, K.S. Carslaw, J.A. Huffman, C. Judd, W.P. Kilthau, R.H. Mason, G. McFiggans, L.A. Miller, J.J. Nájera, E. Polishchuk, S. Rae, C.L. Schiller, M. Si, J.V. Temprado, T.F. Whale, J.P.S. Wong, O. Wurl, J.D. Yakobi-Hancock, J.P.D. Abbatt, J.Y. Aller, A.K. Bertram, D.A. Knopf, B.J. Murray, A marine biogenic source of atmospheric ice-nucleating particles. Nature 525, 234–238 (2015). https://doi.org/10.1038/nature14986

    Article  ADS  Google Scholar 

  • D.P. Winebrenner, W.T. Elam, P.M.S. Kintner, S. Tyler, J.S. Selker, Clean, logistically light access to explore the closest places on Earth to Europa and Enceladus, in AGU Fall Meeting Abstracts (2016)

    Google Scholar 

  • S.K. Yeoh, T.A. Chapman, D.B. Goldstein, P.L. Varghese, L.M. Trafton, On understanding the physics of the Enceladus south polar plume via numerical simulation. Icarus 253, 205–222 (2015). https://doi.org/10.1016/j.icarus.2015.02.020

    Article  ADS  Google Scholar 

  • K. Zacny, J. Mueller, T. Costa, T. Cwik, A. Gray, W. Zimmerman, P. Chow, F. Rehnmark, G. Adams, SLUSH: Europa hybrid deep drill, in 2018 IEEE Aerospace Conference (IEEE Press, New York, 2018), pp. 1–14

    Google Scholar 

  • K.J. Zahnle, D.G. Korycansky, C.A. Nixon, Transient climate effects of large impacts on Titan. Icarus 229, 378–391 (2014). https://doi.org/10.1016/j.icarus.2013.11.006

    Article  ADS  Google Scholar 

  • P. Zhu, G.E. Manucharyan, A.F. Thompson, J.C. Goodman, S.D. Vance, The influence of meridional ice transport on Europa’s ocean stratification and heat content. Geophys. Res. Lett. 44, 5969–5977 (2017). https://doi.org/10.1002/2017GL072996

    Article  ADS  Google Scholar 

  • C. Zimmer, K.K. Khurana, M.G. Kivelson, Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus 147, 329–347 (2000)

    ADS  Google Scholar 

  • M.Y. Zolotov, Aqueous fluid composition in CI chondritic materials: chemical equilibrium assessments in closed systems. Icarus 220(2), 713–729 (2012)

    ADS  Google Scholar 

  • M.Y. Zolotov, J.S. Kargel, On the chemical composition of Europa’s icy shell, ocean, and underlying rocks, in Europa, vol. 431 (University of Arizona Press, Tucson, 2009)

    Google Scholar 

  • M.Y. Zolotov, E. Shock, Composition and stability of salts on the surface of Europa and their oceanic origin. J. Geophys. Res. 106(E12), 32815–32827 (2001)

    ADS  Google Scholar 

  • M.Y. Zolotov, E.L. Shock, Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. J. Geophys. Res., Planets 108(E4) (2003). https://doi.org/10.1029/2002JE001966

  • M.Y. Zolotov, E.L. Shock, A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa. J. Geophys. Res., Planets 109(E6) (2004). https://doi.org/10.1029/2003JE002194

  • I.A. Zotikov, V.S. Zagorodnov, J.V. Raikovsky, Core drilling through the Ross Ice Shelf (Antarctica) confirmed basal freezing. Science 207(4438), 1463–1465 (1980)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous reviewers for their thoughtful comments. K.M.S. was supported by NASA Grant NNX14AR28G. K.K. was supported by the Czech Science Foundation through project No. 19-10809S and by Charles University Research Program No. UNCE/SCI/023. C.R.G. was supported by NASA through the Cassini Project. G.M. acknowledges support from the Italian Space Agency (2018-25-HH.0). Work by F.P. was funded by the European Research Council (ERC) Consolidator Grant 724908-Habitat OASIS. M.R.N. has been financially supported by the Space Research User Support program of the Netherlands Organization for Scientific Research (NWO) under contract number ALW-GO/16-19. T.R. was supported by the Helmholtz Association (project VH-NG-1017). Work by JPL co-authors was partially supported by strategic research and technology funds from the Jet Propulsion Laboratory, Caltech, and by the Icy Worlds and Titan nodes of NASA’s Astrobiology Institute (13-13NAI7_2-0024 and 17-NAI8-2-017). The authors thank the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) for their support in the framework of the PRODEX programme. This is UTIG contribution number 3659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krista M. Soderlund.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ocean Worlds

Edited by Athena Coustenis, Tilman Spohn, Rafael Rodrigo, Kevin P. Hand, Alexander Hayes, Karen Olsson-Francis, Frank Postberg, Christophe Sotin, Gabriel Tobie, Francois Raulin and Nicolas Walter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soderlund, K.M., Kalousová, K., Buffo, J.J. et al. Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites. Space Sci Rev 216, 80 (2020). https://doi.org/10.1007/s11214-020-00706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00706-6

Keywords

Navigation