Skip to main content

Advertisement

Log in

Parsimonious periodic autoregressive models for time series with evolving trend and seasonality

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This paper proposes an extension of Periodic AutoRegressive (PAR) modelling for time series with evolving features. The large scale of modern datasets, in fact, implies that the time span may subtend several evolving patterns of the underlying series, affecting also seasonality. The proposed model allows several regimes in time and a possibly different PAR process with a trend term in each regime. The means, autocorrelations and residual variances may change both with the regime and the season, resulting in a very large number of parameters. Therefore as a second step we propose a grouping procedure on the PAR parameters, in order to obtain a more parsimonious and concise model. The model selection procedure is a complex combinatorial problem, and it is solved basing on genetic algorithms that optimize an information criterion. The model is tested in both simulation studies and real data analysis from different fields, proving to be effective for a wide range of series with evolving features, and competitive with respect to more specific models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Downloaded from http://dati-congiuntura.istat.it/.

  2. Downloaded from http://www.metoffice.gov.uk/hadobs/hatcet/data/download.html.

  3. Downloaded from http://www.stats.uwo.ca/faculty/mcleod/epubs/mhsets/MHSETS.zip.

References

  • Bai, J., Perron, P.: Estimating and testing linear models with multiple structural changes. Econometrica 66(1), 47–78 (1998)

    Article  MathSciNet  Google Scholar 

  • Baragona, R., Battaglia, F., Cucina, D.: Fitting piecewise linear threshold autoregressive models by means of genetic algorithms. Comput. Stat. Data Anal. 47(2), 277–295 (2004)

    Article  MathSciNet  Google Scholar 

  • Baragona, R., Battaglia, F., Poli, I.: Evolutionary Statistical Procedures. Springer, Berlin (2011)

    Book  Google Scholar 

  • Battaglia, F., Protopapas, M.K.: Multi-regime models for nonlinear nonstationary time series. Comput. Stat. 27(2), 319–341 (2012)

    Article  MathSciNet  Google Scholar 

  • Battaglia, F., Cucina, D., Rizzo, M.: A generalization of periodic autoregressive models for seasonal time series. Tech. Rep. 2, Department of Statistical Sciences, University La Sapienza, Rome, Italy, ISSN 2279-798X (2018)

  • Bodo, G., Cividini, A., Signorini, L.F.: Forecasting the italian industrial production index in real time. J. Forecast. 10(3), 285–299 (1991)

    Article  Google Scholar 

  • Box, G.E.P.: Science and statistics. J. Am. Stat. Assoc. 71(356), 791–799 (1976)

    Article  MathSciNet  Google Scholar 

  • Brown, R.L., Durbin, J., Evans, J.M.: Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc. Ser. B 37(2), 149–192 (1975)

    MathSciNet  MATH  Google Scholar 

  • Bruno, G., Lupi, C.: Forecasting industrial production and the early detection of turning points. Empir. Econ. 29(3), 647–671 (2004)

    Article  Google Scholar 

  • Bulligan, G., Golinelli, R., Parigi, G.: Forecasting monthly industrial production in real-time: from single equations to factor-based models. Empir. Econ. 39(2), 303–336 (2010)

    Article  Google Scholar 

  • Caporale, G., Cunado, J., Gil-Alana, L.A.: Deterministic versus stochastic seasonal fractional integration and structural breaks. Stat. Comput. 22(2), 349–358 (2012)

    Article  MathSciNet  Google Scholar 

  • Chatterjee, S., Laudato, M., Lynch, L.A.: Genetic algorithms and their statistical applications: an introduction. Comput. Stat. Data Anal. 22(6), 633–651 (1996)

    Article  Google Scholar 

  • Cucina, D., Rizzo, M., Ursu, E.: Multiple changepoint detection for periodic autoregressive models with an application to river flow analysis (2018). arXiv:1801.01697

  • Davis, R.A., Lee, T.C.M., Rodriguez-Yam, G.A.: Structural break estimation for nonstationary time series models. J. Am. Stat. Assoc. 101(473), 223–239 (2006)

    Article  MathSciNet  Google Scholar 

  • Davis, R.A., Lee, T.C.M., Rodriguez-Yam, G.A.: Break detection for a class of nonlinear time series models. J. Time Ser. Anal. 29(5), 834–867 (2008)

    Article  MathSciNet  Google Scholar 

  • Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, Chichester (1998)

    MATH  Google Scholar 

  • Franses, P.H.: The effects of seasonally adjusting a periodic autoregressive process. Comput. Stat. Data Anal. 19(6), 683–704 (1995)

    Article  MathSciNet  Google Scholar 

  • Franses, P.H., Paap, R.: Periodic Time Series Models. Oxford University Press, New York (2004)

    Book  Google Scholar 

  • Girardi, A., Guardabascio, B., Ventura, M.: Factor-augmented bridge models (FABM) and soft indicators to forecast italian industrial production. J. Forecast. 35(6), 542–552 (2016)

    Article  MathSciNet  Google Scholar 

  • Gladyshev, E.: Periodically correlated random sequence. Sov. Math. 2, 385–388 (1961)

    MATH  Google Scholar 

  • Hipel, K.W., McLeod, A.I.: Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam (1994)

    Google Scholar 

  • Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  • Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  • Kapetanios, G.: Variable selection in regression models using nonstandard optimisation of information criteria. Comput. Stat. Data Anal. 52(1), 4–15 (2007)

    Article  MathSciNet  Google Scholar 

  • Kleiber, C., Hornik, K., Leisch, F., Zeileis, A.: strucchange: an R package for testing for structural change in linear regression models. J. Stat. Softw. 7(2), 1–38 (2002)

    Google Scholar 

  • Kontoghiorghes, E.J.: Handbook of Parallel Computing and Statistics. Chapman & Hall/CRC, Boca Raton (2005)

    Book  Google Scholar 

  • Li, S., Lund, R.: Multiple changepoint detection via genetic algorithm. J. Clim. 25, 674–686 (2012)

    Article  Google Scholar 

  • Lu, Q., Lund, R.B., Lee, T.C.M.: An MDL approach to the climate segmentation problem. Ann. Appl. Stat. 4(1), 299–319 (2010)

    Article  MathSciNet  Google Scholar 

  • Noakes, D.J., McLeod, A.I., Hipel, K.W.: Forecasting monthly riverflow time series. Int. J. Forecast. 1(2), 179–190 (1985)

    Article  Google Scholar 

  • Ploberger, W., Krämer, W.: The CUSUM test with OLS residuals. Econometrica 60(2), 271–285 (1992)

    Article  MathSciNet  Google Scholar 

  • Proietti, T., Hillebrand, E.: Seasonal changes in Central England temperatures. J. R. Stat. Soc. Ser A 180(3), 769–791 (2017)

    Article  MathSciNet  Google Scholar 

  • Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  • Reeves, C.R.: Modern Heuristic Techniques for Combinatorial Problems. Wiley, New York (1993)

    MATH  Google Scholar 

  • Sin, C.Y., White, H.: Information criteria for selecting possibly misspecified parametric models. J. Econom. 71(1–2), 207–225 (1996)

    Article  MathSciNet  Google Scholar 

  • So, M.K.P., Chung, R.S.W.: Dynamic seasonality in time series. Comput. Stat. Data Anal. 70, 212–226 (2014)

    Article  MathSciNet  Google Scholar 

  • Teräsvirta, T.: Specification, estimation and evaluation of smooth transition autoregressive models. J. Am. Stat. Assoc. 89(425), 208–218 (1994)

    MATH  Google Scholar 

  • Thompstone, R.M., Hipel, K.W., McLeod, A.I.: Grouping of periodic autoregressive models. In: Anderson, O.D., Ord, J.K., Robinson, E.A. (eds.) Time Series Analysis: Theory and Practice 6. Proceedings Conference Toronto 1983, North-Holland, Amsterdam, pp. 35–49 (1985)

  • Tong, H.: Non Linear Time Series: A Dynamical System Approach. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  • Ursu, E., Turkman, K.F.: Periodic autoregressive model identification using genetic algorithms. J. Time Ser. Anal. 33(2), 398–405 (2012)

    Article  MathSciNet  Google Scholar 

  • Wong, H., Ip, W.C., Zhang, R., Xia, J.: Non-parametric time series models for hydrological forecasting. J. Hydrol. 332(3–4), 337–347 (2007)

    Article  Google Scholar 

  • Zeileis, A., Kleiber, C., Krämer, W., Hornik, K.: Testing and dating of structural changes in practice. Comput. Stat. Data Anal. 44(1–2), 109–123 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the Associate Editor and the Referees for their useful comments and suggestions. We are grateful to Eugen Ursu for involving us in research on periodic autoregressive models. This research was supported by University La Sapienza, Rome under grant C26A15NK4H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Rizzo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Asymptotic equivalence of a test of hypothesis and an information criterion

Appendix: Asymptotic equivalence of a test of hypothesis and an information criterion

Let us consider two nested models \(M_0\) and \(M_1\), where \(M_0\) has p parameters and \(M_1\) has q additional parameters that under the null hypothesis \(H_0\) are assumed equal to zero. A standard F test under gaussianity for \(H_0\) is obtained by the test statistic:

$$\begin{aligned} F = \frac{(SS_0-SS_1)/q}{SS_1/(N-p-q)} \end{aligned}$$
(4)

where \(SS_0\) and \(SS_1\) are the residual sum of squares of the model \(M_0\) and \(M_1\) fitted to N observations.

Under the null hypothesis the statistic (4) follows a F distribution with q and \(N-p-q\) degrees of freedom. Let \({\overline{F}} _\alpha \) denote the \((1-\alpha )\)-quantile of that distribution, then hypothesis \(H_0\) is rejected at level \(1-\alpha \) whenever \(F>{\overline{F}}_\alpha \), or

$$\begin{aligned} \log (SS_0) - \log (SS_1) > \log \left( 1+ {\overline{F}}_\alpha \frac{q}{N-p-q} \right) . \end{aligned}$$

For N large the right hand side may be approximated by \({\overline{F}}_\alpha \, q/(N-p-q)\) and rejection is equivalent to

$$\begin{aligned} \log (SS_0) - \log (SS_1) > {\overline{F}}_\alpha \frac{q}{N-p-q} \end{aligned}$$

that may be also written \(\mathrm{IC}_0^* - \mathrm{IC}_1^* >0\) where \(\mathrm{IC}_0^*= \log (SS_0) + \pi ^* \, p\) , \(\mathrm{IC}_1^*= \log (SS_1) + \pi ^* \, (p+q)\) and

$$\begin{aligned} \pi ^*= \frac{N}{N-p-q} \, {\overline{F}}_\alpha . \end{aligned}$$
(5)

It follows that choosing a penalizing constant equal to \(\pi ^*\) in (5), model \(M_1\) will be preferred to model \(M_0\) by the information criterion whenever the test rejects the null hypothesis \(H_0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battaglia, F., Cucina, D. & Rizzo, M. Parsimonious periodic autoregressive models for time series with evolving trend and seasonality. Stat Comput 30, 77–91 (2020). https://doi.org/10.1007/s11222-019-09866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-019-09866-0

Keywords

Navigation