Skip to main content
Log in

Borylene as an electron-pair donor for PB pnicogen bonds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio MP2/aug’-cc-pVTZ calculations have been performed on the complexes (CO)2(HB):PXH2 and (N2)2(HB):PXH2, for X = F, Cl, NC, OH, CN, CCH, CH3, and H, in order to investigate the properties of these complexes which are stabilized by PB pnicogen bonds, with B the electron-pair donor. The binding energies of these complexes exhibit an exponential dependence on the P-B distance, but they do not correlate with the MEP minima for (CO)2(HB) and (N2)2(HB), nor with the MEP maxima for PXH2. For fixed X, the binding energy of (N2)2(HB):PXH2 is greater than that of (CO)2(HB):PXH2. Charge-transfer stabilizes both series of complexes, and occurs from the B electron pair to the antibonding P-A σ orbital, with A the atom of X directly bonded to P. These charge-transfer energies also exhibit an exponential dependence on the P-B distance. In the complexes (CO)2(HB):PXH2, there is a second charge-transfer interaction from the lone pair on P to the antibonding π orbitals of the two C-O groups. Electron density analyses indicate that the PB bonds in these complexes are stabilized by relatively weak interactions with little covalent character. The chemical shieldings of 11B are essentially unaffected by complex formation. In contrast, the shieldings of 31P increase from 10 to 50 ppm in the four most strongly bound complexes, but decrease by −4 to −12 ppm in the remaining complexes. For each series of complexes, EOM-CCSD spin-spin coupling constants 1pJ(P-B) increase quadratically with decreasing P-B distance. For fixed X, 1pJ(P-B) is greater for (CO)2(HB):PXH2 compared to (N2)2(HB):PXH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moss RA, Doyle MP (2014) Contemporary carbene chemistry. In: Rokita SE (ed) Wiley series on reactive intermediates in chemistry and biology. Wiley, Hoboken

  2. Cazin CSJ (2011) N-Heterocyclic carbenes in transition metal catalysis and organocatalysis. In: Bianchini C, Cole-Hamilton DJ, van Leeuwen PWNM (eds) Catalysis by metal complexes, vol 32. Springer, Dordrecht

  3. Alkorta I, Elguero J (1996) J Phys Chem 100:19367–19370

    Article  CAS  Google Scholar 

  4. Hollóczki O (2016) Phys Chem Chem Phys 18:126–140

    Article  Google Scholar 

  5. Lv H, Zhuo HY, Li QZ, Yang X, Li WZ, Cheng JB (2014) Mol Phys 112:3024–3032

    Article  CAS  Google Scholar 

  6. Donoso-Tauda O, Jaque P, Elguero J, Alkorta I (2014) J Phys Chem A 118:9552–9560

    Article  CAS  Google Scholar 

  7. Greenwood NN, Earnshow A (1984) Chemistry of elements, Chapter 6 edn. Pergamon Press, Oxford

    Google Scholar 

  8. Bickelhaupt FM, Radius U, Ehlers AW, Hoffmann R, Baerends EJ (1998) New J Chem 22:1–3

    Article  Google Scholar 

  9. Radius U, Bickelhaupt FM, Ehlers AW, Goldberg N, Hoffmann R (1998) Inorg Chem 37:1080–1090

    Article  CAS  Google Scholar 

  10. Rozas I, Alkorta I, Elguero J (1999) J Phys Chem A 103:8861–8869

    Article  CAS  Google Scholar 

  11. Alkorta I, Soteras I, Elguero J, Del Bene JE (2011) Phys Chem Chem Phys 13:14026–14032

    Article  CAS  Google Scholar 

  12. Celik MA, Sure R, Klein S, Kinjo R, Bertand G, Frenking G (2012) Chem Eur J 18:5676–5692

    Article  CAS  Google Scholar 

  13. Kinjo R, Donnadieu B, Celik MA, Frenking G, Bertrand G (2011) Science 333:610–613

    Article  CAS  Google Scholar 

  14. Braunschweig H, Dewhurst RD, Hupp F, Nutz M, Radacki K, Tate CW, Vargas A, Ye Q (2015) Nature 522:327–330

    Article  CAS  Google Scholar 

  15. Alkorta I, Elguero J, Del Bene JE (2016) ChemPhysChem 17:3112–3119

    Article  CAS  Google Scholar 

  16. Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem, Quantum Chem Symp 10:1–19

    Article  CAS  Google Scholar 

  17. Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91–100

    Article  CAS  Google Scholar 

  18. Bartlett RJ, Silver DM (1975) J Chem Phys 62:3258–3268

    Article  CAS  Google Scholar 

  19. Bartlett RJ, Purvis GD (1978) Int J Quantum Chem 4:561–581

    Article  Google Scholar 

  20. Del Bene JE (1993) J Phys Chem 97:107–110

    Article  CAS  Google Scholar 

  21. Dunning TH (1989) J Chem Phys 90:007–1023

    Article  Google Scholar 

  22. Woon DE, Dunning TH (1995) J Chem Phys 103:4572–4585

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al. (2009) Gaussian, Inc.: Wallingford CT, Gaussian–09, Revision D.01

  24. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  25. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  26. Popelier PLA (2000) Atoms In Molecules. An Introduction, Prentice Hall, Harlow, England

  27. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Book  Google Scholar 

  28. Keith TA (2011) AIMAll (Version 11.08.23), TK Gristmill Software, Overland Park KS, USA, (aim.tkgristmill.com)

  29. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  30. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. University of Wisconsin, Madison, WI

    Google Scholar 

  31. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785789

    Google Scholar 

  33. Ditchfield R (1974) Mol Phys 27:789–807

    Article  CAS  Google Scholar 

  34. Perera SA, Nooijen M, Bartlett RJ (1996) J Chem Phys 104:3290–3305

    Article  CAS  Google Scholar 

  35. Perera SA, Sekino H, Bartlett RJ (1994) J Chem Phys 101:2186–2196

    Article  CAS  Google Scholar 

  36. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  Google Scholar 

  37. Del Bene JE, Elguero J, Alkorta I, Yañez M, Mó O (2006) J Phys Chem A 110:9959–9966

    Article  CAS  Google Scholar 

  38. Stanton JF, Gauss J, Watts JD, Nooijen M, Oliphant N, Perera SA, Szalay PS, Lauderdale WJ, Gwaltney SR, Beck S, et al. Aces Ii. University of Florida, Gainesville, Fl

  39. Del Bene JE, Alkorta I, Elguero J (2013) J Phys Chem A 117:6893–6903

    Article  CAS  Google Scholar 

  40. Knop O, Boyd RJ, Choi SC (1988) J Am Chem Soc 110:7299–7301

    Article  CAS  Google Scholar 

  41. Gibbs GV, Hill FC, Boisen MB, Downs RT (1998) Phys Chem Minerals 25:585–590

    Article  CAS  Google Scholar 

  42. Alkorta I, Barrios L, Rozas I, Elguero J (2000) J Mol Struct THEOCHEM 496:131–137

    Article  CAS  Google Scholar 

  43. Knop O, Rankin KN, Boyd RJ (2001) J Phys Chem A 105:6552–6566

    Article  CAS  Google Scholar 

  44. Alkorta I, Rozas I, Elguero J (2001) J Phys Chem 105:743–749

    Article  CAS  Google Scholar 

  45. Knop O, Rankin KN, Boyd RJ (2003) J Phys Chem A 107:272–284

    Article  CAS  Google Scholar 

  46. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529–5542

    Article  CAS  Google Scholar 

  47. Alkorta I, Elguero J (2004) Struct Chem 15:117–120

    Article  CAS  Google Scholar 

  48. Tang TH, Deretey E, Jensen SJK, Csizmadia IG (2006) Eur Phys J D 37:217–222

    Article  CAS  Google Scholar 

  49. Alkorta I, Elguero J, Del Bene JE (2013) J Phys Chem A 117:10497–10503

    Article  CAS  Google Scholar 

  50. Pople JA (1964) Mol Phys 7:301–306

    Article  CAS  Google Scholar 

  51. Kalinowski HO, Berger S, Braun S (1988) Carbon-13 NMR spectroscopy. John Wiley & Sons, Chichester, p. 104

    Google Scholar 

  52. Berger S, Braun S, Kalinowski HO (1997) NMR spectroscopy of the non-metallic elements. John Wiley & Sons, Chichester, p. 85

    Google Scholar 

  53. Reed L (1999) J Chem Educ 76:802–804

    Article  CAS  Google Scholar 

  54. Del Bene JE (2004) In: Kaupp M, Bühl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Wiley-VCH, Weinheim, p. 353

    Chapter  Google Scholar 

  55. Del Bene JE, Alkorta I, Elguero J (2015) In: Scheiner S (ed) Noncovalent forces, Springer International Publishing, Switzerland, p. 191

  56. Del Bene JE, Alkorta I, Elguero J (2016) Chem Phys Lett 655:115–119

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out with financial support from the Ministerio de Economía y Competitividad (Project No. CTQ2015-63997-C2-2-P) and Comunidad Autónoma de Madrid (S2013/MIT2841, Fotocarbon). Thanks are also given to the Ohio Supercomputer Center and CTI (CSIC) for their continued computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibon Alkorta.

Additional information

This paper is dedicated to Professor Lou Massa on the occasion of his Festschrift: A Path through Quantum Crystallography.

Electronic supplementary material

ESM 1

(DOC 1866 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkorta, I., Elguero, J. & Del Bene, J.E. Borylene as an electron-pair donor for PB pnicogen bonds. Struct Chem 28, 1419–1427 (2017). https://doi.org/10.1007/s11224-017-0912-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0912-4

Keywords

Navigation