Skip to main content
Log in

Influence of Molecular and Electronic Structure of Ln3+ Complexes on the Occurrence of Monoionic Magnetism: a Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

A Correction to this article was published on 01 November 2022

This article has been updated

The phenomenon of single ion magnetism in Ln3+ coordination compounds and the principles of their rational design are considered. The influence of electronic and chemical structure, as well as the symmetry of the coordination sphere on the value of the energy barrier of magnetic anisotropy, is highlighted. Based on the analysis of the available data in the literature, it is concluded that further efforts in the design of single ion magnets should focus on the development of coordination compounds Dy3 + and Tb3 + with high axiality, in which the strength of the bond between central metal ion and ligands in the apical position far exceeds the appropriate values for ligands in the equatorial plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

Abbreviations

c.n.:

coordination number

SA:

square antiprism

CF:

crystal field

MIM:

monoionic magnet

MMM:

monomolecular magnet

SOC:

spin-orbit coupling

T :

“tunneling splitting”

TAQT:

thermally activated quantum tunneling

m S :

magnetic quantum number

D :

magnetic anisotropy

U eff :

magnetic anisotropy barrier

τ:

relaxation time

T B :

blocking temperature

J :

total angular momentum

S :

total spin of a molecule in the ground state

J :

exchange interaction parameter, exchange integral

C:

center of cyclopentadienyl(–) or cyclooctatetraenyl (2–) ring

THF:

tetrahydrofuran

DME:

dimethoxyethane

DMF:

dimethylformamide

HMB:

hexamethylbenzene

di:

dioxane

py:

pyridine

4-Mepy:

4-methylpyridine

Ph:

phenyl

iPr:

isopropyl

Cyclh:

cyclohexyl

HMB:

hexamethylbenzene

phen:

phenanthroline

bipy:

2,2 -bipyridine

TfO :

triflate anion

Tp :

tris-(3,5-dimethyl-1-pyrazolyl)borate anion

dedtc:

diethyldithiocarbamate

Htbp:

2,4,6-tris-t-butylphenol

TBA+ :

tetrabutylammonium cation

TMA+ :

tetramethylammonium cation

DBC:

2,6-di-tert-butyl-p-cresolate (–)

Btmsm:

bis(trimethylsilyl)methyl (–)

tppo:

triphenylphosphine oxide

DMPE:

1,2-bis(dimethylphosphino)ethane

Dsp :

3,4-dimethyl-2,5-bis(trimethylsilyl)phosphoryl

H2bbpen:

N,N′-bis(2-hydroxybenzyl)-N,N′-bis(2-picolyl)ethylenediamine

18C6:

18-crown-6

Pc:

phthalocyanine

Cp :

cyclopentadiene anion

Cpttt :

1,2,4-tri(tert-butyl)cyclopentadiene anion

Cnt:

cyclononatetraene anion

COT2– :

cyclooctatetraene dianion

References

  1. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, Nature, 365, 141-143 (1993).

    Article  CAS  Google Scholar 

  2. D. Gatteschi, A. Caneschi, L. Pardi, and R. Sessoli, Science, 265, No. 5175, 1054-1058 (1993).

    Article  Google Scholar 

  3. R. Sessoli, H. L. Tsai, A. R. Schake, et al., J. Am. Chem. Soc., 115, No. 5, 1804-1816 (1993).

    Article  CAS  Google Scholar 

  4. K. S. Gavrilenko, S. V. Punin, O. Cador, et al., Inorg. Chem., 44, No. 16, 5903-5910 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. K. S. Gavrilenko, S. V. Punin, O. Cador, et al., J. Am. Chem. Soc., 127, No. 35, 12246-12253 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. S. Demir, l.-R. Jeon, J. R. Long, and T. D. Harris, Coord. Chem. Rev., 289-290, No. 1, 149-176 (2015).

  7. K. S. Gavrilenko, O. Cador, K. Bernot, et al., Chem. Eur. J., 14, No. 7, 2034-2043 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. R. Sessoli and K. Bernot, Lanthanides and Actinides in Molecular Magnetism, Eds. R. A. Layfield and M. Murugesu, Wiley-VCH Verlag GmbH & Co. KGaA (2015), pp. 89-123.

  9. A. D. Katsenis, E. K. Brechin, and G. S. Papaefstathiou, Metal-Organic Framework Materials, Eds. L. R. MacGillivray and C. M. Lukehar, J. Wiley & Sons, West Sussex, UK (2014), pp. 245-258.

  10. D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets, Oxford University Press (2006).

  11. R. Winpenny, Molecular Cluster Magnets, World Scientific Publishing Company, Singapore (2011).

    Book  Google Scholar 

  12. C. Benelli and D. Gatteschi, Introduction to Molecular Magnetism. From Transition Metals to Lanthanides, Wiley-VCH Verlag GmbH & Co., Weinheim (2015).

  13. J. S. Miller and M. Drillon (eds.), Magnetism: From Molecules to Materials, Wiley-VCH, Weinheim (2002), vol. I-V.

  14. J. Bartolome, F. Luis, and J. F. Fernandez (eds.) Molecular Magnets: Physics and Applications, Springer-Verlag, Berlin, Heidelberg (2014).

    Google Scholar 

  15. E. Coronado, P. Delhaes, D. Gatteschi, and J. S. Miller (eds.) Molecular Magnetism: From Molecular Assemblies to the Devices, Springer-Verlag, Dordrecht (1996).

    Google Scholar 

  16. G. Aromi and E. Brechin, Single-Molecule Magnets and Related Phenomena, Ed. R. Winpenny, Springer, Berlin, Heidelberg (2006), pp. 1-67.

  17. D. N. Woodruff, R. E. P. Winpenny, and R. A. Layfield, Chem. Rev., 113, No. 7, 5110-5148 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. D. Gatteschi and R. Sessoli, Angew. Chem. Int. Ed., 42, No. 3, 268-297 (2003).

    Article  CAS  Google Scholar 

  19. E. Moreno-Pineda, L. E. Nodaraki, and F. Tuna, Novel Magnetic Nanostructures: Unique Properties and Applications, Eds. N. Domracheva, M. Caporali, and E. Rentschler, Elsevier (2018), pp. 1-50.

  20. V. V. Pavlishchuk, Theor. Exp. Chem., 33, No. 6, 303-323 (1997).

    CAS  Google Scholar 

  21. A. V. Pavlishchuk and V. V. Pavlishchuk, Theor. Exp. Chem., 56, No. 1, 1-25 (2020).

    Article  CAS  Google Scholar 

  22. R. E. P. Winpenny, Comprehensive Coordination Chemistry II: From Biology to Nanotechnology, Eds. M. Fujita, A. Powell, and C. Creutz, Elsevier, Oxford (2004), pp. 125-175

  23. J. R. Long, Chemistry of Nanostructured Materials, Ed. P. Yang, World Scientific Publishing, Hong Kong (2003), pp. 291-315.

  24. N. Ishikawa, M. Sugita, T. Ishikawa, et al., J. Am. Chem. Soc., 125, No. 29, 8694-8695 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. K.-X. Yu, J. G. C. Kragskow, Y.-S. Ding, et al., Chem., 6, No. 7, 1777-1793 (2020).

    Article  CAS  Google Scholar 

  26. N. Ishikawa, M. Sugita, T. Okubo, et al., Inorg. Chem., 42, No. 7, 2440-2446 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. G. A. Craig and M. Murrie, Chem. Soc. Rev., 44, No. 8, 2135-2147 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. J. Tang and P. Zhang, Lanthanide Single Molecule Magnets, Springer-Verlag, Berlin, Heidelberg (2015).

    Book  Google Scholar 

  29. O. Kahn, Molecular Magnetism, Wiley-VCH, Weinheim, Germany (1993).

    Google Scholar 

  30. A. F. Orchard, Magnetochemistry, Oxford University Press (2003).

  31. J. Jensen and A. R. Mackintosh, Rare Earth Magnetism: Structures and Excitations, Clarendon Press (1991).

  32. L. Sorace, C. Benelli, and D. Gatteschi, Chem. Soc. Rev., 40, No. 6, 3092-3104 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. T. Gupta, Sci. Acta Xaveriana, 6, No. 2, 1-48 (2015).

    Google Scholar 

  34. K. L. M. Harriman, D. Errulat, and M. Murugesu, Trends Chem., 1, No. 4, 425-439 (2019).

    Article  CAS  Google Scholar 

  35. A. V. Pavlishchuk, S. V. Kolotilov, M. Zeller, et al., Inorg. Chem., 56, No. 21, 13152-13165 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. A. V. Pavlishchuk, S. V. Kolotilov, M. Zeller, et al., Eur. J. Inorg. Chem., 2018, No. 30, 3504-3511 (2018).

    Article  CAS  Google Scholar 

  37. M. Feng and M. -L. Tong, Chem. Eur. J., 24, No. 30, 7574-7594 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. S. T. Liddle and J. van Slageren, Chem. Soc. Rev., 44, No. 19, 6655-6669 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. J. D. Rinehart and J. R. Long, Chem. Sci., 2, No. 11, 2078-2085 (2011).

    Article  CAS  Google Scholar 

  40. J.-L. Liu, Y.-C. Chen, and M.-L. Tong, Chem. Soc. Rev., 47, No. 7, 2431-2453 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. L. Ungur, J. J. Le Roy, I. Korobkov, et al., Angew. Chem. Int. Ed., 53, No. 17, 4413-4417 (2014).

    Article  CAS  Google Scholar 

  42. P. Zhang, L. Zhang, C. Wang, et al., J. Am. Chem. Soc., 136, No. 12, 4484-4487 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. L. Ungur and L. F. Chibotaru, Phys. Chem. Chem. Phys., 13, No. 45, 20086-20090 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. K. W. H. Stevens, Proc. Phys. Soc. A, 65, No. 3, 209-215 (1952).

    Article  Google Scholar 

  45. C. Rudowicz and M. Karbowiak, Coord. Chem. Rev., 287, No. 1, 28-63 (2015).

    Article  CAS  Google Scholar 

  46. K. H. J. Buschow and F. R. de Boer, Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow (2003).

  47. T. Yamabayashi, K. Katoh, B. K. Breedlove, and M. Yamashita, Molecules, 22, No. 6, 999-1010 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. J. T. Coutinho, B. Monteiro, and L. C. J. Pereira, Lanthanide-Based Multifunctional Materials: From OLEDs to SIMs, Advanced Nanomaterials, Eds. P. Martin-Ramos, M. R. Silva, Elsevier Inc. (2018), pp. 195-231.

  49. L. Ungur, Lanthanide-Based Multifunctional Materials: From OLEDs to SIMs, Advanced Nanomaterials, Eds. P. Martin-Ramos, M. R. Silva, Elsevier Inc. (2018), pp. 1-58.

  50. L. Ungur and L. F. Chibotaru, Chem. Eur. J., 23, No. 15, 3708-3718 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. N. F. Chilton, Inorg. Chem., 54, No. 5, 2097-2099 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. L. Ungur and L. F. Chibotaru, Inorg. Chem., 55, No. 20, 10043-10056 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. J. T. Coutinho, B. M. Laura, and C. J. Pereira, Lanthanide-Based Multifunctional Materials From OLEDs to SIMs, Advanced Nanomaterials, Eds. P. Martin-Ramos and M. R. Silva, Elsevier Inc. (2018), pp. 195-231.

  54. B. Wang, S. Jiang, X. Wang, and S. Gao, Rare Earth Coordination Chemistry: Fundamentals and Applications, Ed. C. Huang, John Wiley & Sons, (Asia) Pte Ltd. (2010), pp. 355-405.

  55. J. Dreiser, J. Phys.: Condens. Matter., 27, No. 18, 183203-183223 (2015).

    CAS  PubMed  Google Scholar 

  56. H. L. C. Feltham, Y. Lan, F. Klower, et al., Chem. Eur. J., 17, No. 16, 4362-4365 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. R. J. Blagg, L. Ungur, F. Tuna, et al., Nat. Chem., 5, No. 8, 673-678 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. S. G. McAdams, A.-M. Ariciu, A. K. Kostopoulos, et al., Coord. Chem. Rev., 346, No. 1, 216-239 (2017).

    Article  CAS  Google Scholar 

  59. H. L. C. Feltham and S. Brooker, Coord. Chem. Rev., 276, No. 1, 216-239 (2014).

    Google Scholar 

  60. A. Dey, P. Kalita, and V. Chandrasekhar, ACS Omega, 3, No. 8, 9462-9475 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. S. Lee and T. Ogawa, Chem. Lett., 46, No. 1, 10-18 (2017).

    Article  Google Scholar 

  62. K.-X. Yu, Y.-S. Ding, T. Han, et al., Inorg. Chem. Front., 3, No. 8, 1028-1034 (2016).

    Article  CAS  Google Scholar 

  63. V. S. Parmar, F. Ortu, X. Ma, et al., Chem. Eur. J., 26, No. 35, 7774-7778 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. M. Gregson, N. F. Chilton, A.-M. Ariciu, et al., Chem. Sci., 7, No. 1, 155-165 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. S.-S. Liu, Y.-S. Meng, Y.-Q. Zhang, et al., Inorg. Chem., 56, No. 13, 7320-7323 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. T. P. Latendresse, N. S. Bhuvanesh, and M. Nippe, J. Am. Chem. Soc., 139, No. 24, 8058-8061 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Y.-C. Chen, J.-L. Liu, L. Ungur, et al., J. Am. Chem. Soc., 138, No. 8, 2829-2837 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Y.-C. Chen, J.-L. Liu, Y. Lan, et al., Chem. Eur. J., 23, No. 24, 5708-5715 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. S. K. Gupta, T. Rajeshkumar, G. Rajaraman, et al., Chem. Sci., 7, No. 8, 5181-5191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Y.-S. Ding, N. F. Chilton, R. E. P. Winpenny, et al., Angew. Chem. Int. Ed., 55, No. 52, 16071-16074 (2016).

    Article  CAS  Google Scholar 

  71. Y.-S. Ding, T. Han, Y.-Q. Zhai, et al., Chem. Eur. J., 26, No. 26, 5893-5902 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. A. K. Bar, P. Kalita, J.-P. Sutter, et al., Inorg. Chem., 57, No. 5, 2398-2401 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. J. Liu, Y.-C. Chen, J.-L. Liu, et al., J. Am. Chem. Soc., 138, No. 16, 5441-5450 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Y.-N. Guo, L. Ungur, G. E. Granroth, et al., Sci. Rep., 4, 5471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. J. Clemente-Juan, E. Coronado, and A. Gaita-Arino, Lanthanides and Actinides in Molecular Magnetism, Eds. R. A. Layfield, M. Murugesu, Wiley & VCH Verlag GmbH & Co. KGaA (2015), pp. 27-60.

  76. N. Ishikawa, Y. Mizuno, S. Takamatsu, et al., Inorg. Chem., 47, No. 22, 10217-10219 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. S.-D. Jiang, B.-W. Wang, G. Su, et al., Angew. Chem. Int. Ed., 49, No. 41, 7448-7451 (2010).

    Article  CAS  Google Scholar 

  78. G.-J. Chen, C.-Y. Gao, J.-L. Tian, et al., Dalton Trans., 40, No. 20, 5579-5583 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. X. Yao, P. Yan, G. An, et al., New J. Chem., 42, No. 11, 8438-8444 (2018).

    Article  CAS  Google Scholar 

  80. G.-J. Chen, Y. Zhou, G.-X. Jin, and Y.-B. Dong, Dalton Trans., 43, No. 44, 16659-16665 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. G.-J. Chen, Y.-N. Guo, J.-L. Tian, et.al., Chem. Eur. J., 18, No. 9, 2484-2487 (2012).

  82. K. Qian, J. J. Baldovi, S.-D. Jiang, et al., Chem. Sci., 6, No. 8, 4587-4593 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. X. Yao, P. Yan, G. An, et al., Eur. J. Inorg. Chem., No. 10, 1413-1420 (2019).

  84. Y. Bi, Y.-N. Guo, L. Zhao, et al., Chem. Eur. J., 17, No. 44, 12476-12481 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Y.-Z. Tong, C. Gao, Q.-L. Wang, et al., Dalton Trans., 44, No. 19, 9020-9026 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Z.-G. Wang, J. Lu, C.-Y. Gao, et al., Inorg. Chem. Commun., 27, No. 1, 127-130 (2013).

    Article  CAS  Google Scholar 

  87. S. Zhang, W. Mo, J. Zhang, et al., RSC Adv., 8, No. 52, 29513-29525 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. S. Zhang, H. Ke, L. Sun, et al., Inorg. Chem., 55, No. 8, 3865-3871 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. J. Zhu, C. Wang, F. Luan, et al., Inorg. Chem., 53, No. 17, 8895-8901 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. S. Zhang, W. Mo, B. Yin, et al., Dalton Trans., 47, No. 35, 12393-12405 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. C. Gao, Q. Yang, B.-W. Wang, et al., CrystEngComm., 18, No. 22, 4165-4171 (2016).

    Article  CAS  Google Scholar 

  92. S. Bala, G.-Z. Huang, Z.-Y. Ruan, et al., Chem. Commun., 55, No. 67, 9939-9942 (2019).

    Article  CAS  Google Scholar 

  93. H. H. Zou, T. Meng, Q. Chen, et al., Inorg. Chem., 58, No. 4, 2286-2298 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. S. Zhang, H. Wu, L. Sun, et al., J. Mater. Chem. C, 5, No. 6, 1369-1382 (2017).

    Article  CAS  Google Scholar 

  95. A. B. Canaj, S. Dey, E. R. Marti, et al., Angew. Chem. Int. Ed., 58, No. 40, 14146-14151 (2019).

    Article  CAS  Google Scholar 

  96. Z.-H. Li, Y.-Q. Zhai, W.-P. Chen, et al., Chem. Eur. J., 25, No. 71, 16219-16224 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. J. Li, S. Gomez-Coca, B. S. Dolinar, et al., Inorg. Chem., 58, No. 4, 2610-2617 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. A. B. Canaj, S. Dey, O. Cespedes, et al., Chem. Commun., 56, No. 10, 1533-1536 (2020).

    Article  CAS  Google Scholar 

  99. Y.-S. Meng, Y.-Q. Zhang, Z.-M. Wang, et al., Chem. Eur. J., 22, No. 36, 12724-12731 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. K. R. McClain, C. A. Gould, K. Chakarawet, et al., Chem. Sci., 9, No. 45, 8492-8503 (2018).

    Article  Google Scholar 

  101. S.-D. Jiang, S.-S. Liu, L.-N. Zhou, et al., Inorg. Chem., 51, No. 5, 3079-3087 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. S. Demir, J. M. Zadrozny, and J. F. Long, Chem. Eur. J., 20, No. 28, 9524-9529 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. S. Demir, J. M. Zadrozny, M. Nippe, and J. R. Long, J. Am. Chem. Soc., 134, No. 45, 18546-18549 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. C. A. P. Goodwin, F. Ortu, D. Reta, et al., Nature, 548, 439-442 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. F.-S. Guo, B. M. Day, Y.-C. Chen, et al., Science, 362, No. 6421, 1400-1403 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. F.-S. Guo, B. M. Day, Y.-C. Chen, et al., Angew. Chem. Int. Ed., 56, No. 38, 11445-11449 (2017).

    Article  CAS  Google Scholar 

  107. B. M. Day, F.-S. Guo, and R. A. Layfield, Acc. Chem. Res., 51, No. 8, 1880-1889 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. S.-S. Liu, J. W. Ziller, Y.-Q. Zhang, et al., Chem. Commun., 50, No. 77, 11418-11420 (2014).

    Article  CAS  Google Scholar 

  109. R. R. Meihaus and J. R. Long, J. Am. Chem. Soc., 135, No. 47, 17952-17957 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. J. J. Le Roy, M. Jeletic, S. I. Gorelsky, et al., J. Am. Chem. Soc., 135, No. 9, 3502-3510 (2013).

    Article  PubMed  Google Scholar 

  111. M. J. Heras Ojea, L. C. H. Maddock, and R. A. Layfield, Organometallic Magnets. Topics in Organometallic Chemistry, Eds. V. Chandrasekhar, F. Pointillart, Springer, Cham (2019), Vol. 64, pp. 253-280.

  112. R. Collins, J. P. Durrant, M. He, and R. A. Layfield, Handbook of the Physics and Chemistry of Rare Earths (2019), vol. 55, pp. 89-121.

  113. R. A. Layfield, Organometallics, 33, No. 5, 1084-1099 (2014).

    Article  CAS  Google Scholar 

  114. T. P. Latendresse, V. Vieru, B. O. Wilkins, et al., Angew. Chem. Int. Ed., 57, No. 27, 8164-8169 (2018).

    Article  CAS  Google Scholar 

  115. S. K. Gupta, T. Rajeshkumar, G. Rajaraman, and R. Murugavel, Chem. Commun., 52, No. 44, 7168-7171 (2016).

    Article  CAS  Google Scholar 

  116. Y.-C. Chen, J.-L. Liu, W. Wernsdorfer, et al., Angew. Chem. Int. Ed., 56, No. 18, 4996-5000 (2017).

    Article  CAS  Google Scholar 

  117. N. Ishikawa, M. Sugita, T. Ishikawa, et al., J. Phys. Chem. B, 108, No. 31, 11265-11271 (2004).

    Article  CAS  Google Scholar 

  118. S. Takamatsu, T. Ishikawa, S. Koshihara, and N. Ishikawa, Inorg. Chem., 46, No. 18, 7250-7252 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. N. Ishikawa, M. Sugita, N. Tanaka, et al., Inorg. Chem., 43, No. 18, 5498-5500 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. C. R. Ganivet, B. Ballesteros, G. de la Torre, et al., Chem. Eur. J., 19, No. 4, 1457-1465 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Y. Chen, F. Ma, X. Chen, et al., Inorg. Chem., 56, No. 22, 13889-13896 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. C. A. P. Goodwin, D. Reta, F. Ortu et al., J. Am. Chem. Soc., 139, No. 51, 18714-18724 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. F. Lu, M. -M. Ding, J. -X. Li, et al., Dalton Trans., 49, No. 41, 14576-14583 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. H. Zhang, R. Nakanishi, K. Katoh, et al., Dalton Trans., 47, No. 2, 302-305 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. A. J. Brown, D. Pinkowicz, M. R. Saber, and K. R. Dunbar, Angew. Chem. Int. Ed., 54, No. 20, 5864-5868 (2015).

    Article  CAS  Google Scholar 

  126. M. R. Silva, P. Martm-Ramos, J. T. Coutinho, et.al., Dalton Trans., 44, No. 3, 1264-1272 (2015).

  127. J. D. Hilgar, M. G. Bernbeck, and J. D. Rinehart, J. Am. Chem. Soc., 141, No. 5, 1913-1917 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. J. D. Hilgar, M. G. Bernbeck, B. S. Flores, and J. D. Rinehart, Chem. Sci., 9, No. 36, 7204-7209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. J. D. Hilgar, B. S. Flores, and J. D. Rinehart, Chem. Commun., 53, No. 53, 7322-7324 (2017).

    Article  CAS  Google Scholar 

  130. J. Le Roy, I. Korobkov, and M. Murugesu, Chem. Commun., 50, No. 13, 1602-1604 (2014).

    Article  Google Scholar 

  131. J. J. Le Roy, L. Ungur, I. Korobkov, and M. Murugesu, J. Am. Chem. Soc., 136, No. 22, 8003-8010 (2014).

    Article  PubMed  Google Scholar 

  132. S.-D. Jiang, B.-W. Wang, H.-L. Sun, et. al., J. Am. Chem. Soc., 133, No. 13, 4730-4733 (2011).

  133. J. J. Baldovi, J. M. Clemente-Juan, E. Coronado, and A. Gaita-Arino, Inorg. Chem., 53, No. 20, 11323-11327 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. S.-M. Chen, J. Xiong, Y.-Q. Zhang, et al., Chem. Sci., 9, No. 38, 7540-7545 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Y.-S. Meng, C.-H. Wang, Y.-Q. Zhang, et. al., Inorg. Chem. Front., 3, No. 6, 828-835 (2016).

  136. L. Munzfeld, C. Schoo, S. Bestgen, et al., Nat. Commun., 10, 3135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

This work was supported by the National Research Fund of Ukraine, grant No. 2020.02/0202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pavlishchuk.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 3, pp. 135-158, May-June, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlishchuk, A.V., Pavlishchuk, V.V. Influence of Molecular and Electronic Structure of Ln3+ Complexes on the Occurrence of Monoionic Magnetism: a Review. Theor Exp Chem 57, 163–190 (2021). https://doi.org/10.1007/s11237-021-09686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-021-09686-2

Keywords

Navigation