Skip to main content
Log in

Photocatalytic C(sp3)–H Activation of Aliphatic Amines by Using Decatungstate Anion to Obtain Aminoacids

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The possibility of photocatalytic C(sp3)–H activation of aliphatic amines with the participation of decatungstate anion and their subsequent interaction with an acrylic acid ester has been demonstrated. Irradiation of reaction mixtures containing an aliphatic amine in the form of trifluoroacetic acid salt, acrylic acid tert-butyl ester, and sodium decatungstate Na4W10O32 or tetra-n-butylammonium has been shown to result in the formation of branched-chain amino acid esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Scheme 2.

Similar content being viewed by others

References

  1. S. Roslin and L. R. Odell, Eur. J. Org. Chem., 2017, No. 15, 1993-2007 (2017), https://doi.org/10.1002/ejoc.201601479.

    Article  CAS  Google Scholar 

  2. H. Yi., G. Zhang, H. Wang, et al., Chem. Rev., 117, No. 13, 9016-9085 (2017), https://doi.org/10.1021/acs.chemrev.6b00620.

    Article  CAS  PubMed  Google Scholar 

  3. N. Hoffman, Synthesis, 48, No. 12, 1782-1802 (2016), https://doi.org/10.1055/s-0035-1561425.

    Article  CAS  Google Scholar 

  4. L. Capaldo and D. Ravelli, Eur. J. Org. Chem., 2017, No. 15, 2056-2071 (2017), https://doi.org/10.1002/ejoc.201601485.

    Article  CAS  Google Scholar 

  5. D. Ravelli, S. Plotti, and M. Fagnoni, Chem. Rev., 116, No. 17, 9850-9913 (2016).

    Article  CAS  Google Scholar 

  6. P. A. Champagne, J. Desroches, J.-D. Hamel, et al., Chem. Rev., 115, No. 17, 9073-9174 (2015), https://doi.org/10.1021/acs.chemrev.5b00662.

    Article  CAS  PubMed  Google Scholar 

  7. S. Bloom, J. L. Knippel, and T. Lectka, Chem. Sci., 5, No. 3, 1175-1178 (2014), https://doi.org/10.1039/C3SC53261E.

    Article  CAS  Google Scholar 

  8. S. D. Halperin, H. Fan, S. Chang, et al., Angew. Chem., 126, No. 18, 4778-4781 (2014), https://doi.org/10.1002/anie.201400420.

    Article  CAS  Google Scholar 

  9. A. V. Kozytskiy, Ya. V. Panasyuk, and A. M. Mishura, Theor. Exp. Chem., 54, No. 5, 322-330 (2018), https://doi.org/10.1007/s11237-018-9577-3.

    Article  CAS  Google Scholar 

  10. I. B. Perry, T. F. Brewer, P. J. Sarver, et al., Nature, 560, No. 7716, 70-75 (2018), https://doi.org/10.1038/s41586-018-0366-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Fukuyama, K. Yamada, T. Nishikawa, et al., Chem. Lett., 47, No. 2, 207-209 (2018), https://doi.org/10.1246/cl.171068.

    Article  CAS  Google Scholar 

  12. T. Fukuyama, T. Nishikawa, K. Yamada, et al., Org. Lett., 19, No. 23, 6436-6439 (2017), https://doi.org/10.1021/acs.orglett.7b03339.

    Article  CAS  PubMed  Google Scholar 

  13. I. N. Lykakis, E. Evgenidou, and M. Orfanopoulos, Curr. Org. Chem., 16, No. 20, 2400-2414 (2012), https://doi.org/10.2174/13852721280350092.

    Article  CAS  Google Scholar 

  14. D. Ravelli, S. Plotti, M. Fagnoni, Acc. Chem. Res., 49, No. 10, 2232-2242 (2016), https://doi.org/10.1021/acs.accounts.6b00339.

    Article  CAS  PubMed  Google Scholar 

  15. A. Chemseddine, C. Sanchez, J. Livage, et al., Inorg. Chem., 23, No. 17, 2609-2613 (1984) https://doi.org/10.1021/ic00185a014.

    Article  CAS  Google Scholar 

  16. C. Tanielian, Coord. Chem. Rev., 178-180, part 2, 1165-1181 (1998).

  17. K. Suzuki, N. Mazino, and M. Yamaguchi, ACS. Catal., 8, No. 11, 10809-10825 (2018), https://doi.org/10.1021/acscatal.8b03498.

    Article  CAS  Google Scholar 

  18. V. D. Waele, O. Poizat, M. Fagnoni, et al., ACS. Catal., 6, No. 10, 7174-7182 (2016), https://doi.org/10.1021/acscatal.6b01984.

    Article  CAS  Google Scholar 

  19. I. Texier., J. A. Delaire, and C. Giannotti, Phys. Chem. Chem. Phys., 2, No. 6, 1205-1212 (2000), https://doi.org/10.1039/A908588B.

    Article  CAS  Google Scholar 

  20. P. Sykes, Mechanisms in Organic Chemistry [in Russian], Khimiya, Moscow (1991).

  21. Yu. M. Kiselev, Chemistry of Coordination Compounds, Textbook and Practical Training for Universities [in Russian], Yurait, Moscow (2021).

  22. H. M. L. Davies and D. Morton, J. Org. Chem., 81, No. 1, 343-350 (2016), https://doi.org/10.1021/acs.joc.5b02818.

    Article  CAS  PubMed  Google Scholar 

  23. J. Das, S. Guin, and D. Maiti, Chem. Sci., 11, No. 40, 10887-10909 (2020), https://doi.org/10.1039/D0SC04676K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kozytskiy.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 6, pp. 370-374, November-December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozytskiy, A.V., Bielousov, O.P. Photocatalytic C(sp3)–H Activation of Aliphatic Amines by Using Decatungstate Anion to Obtain Aminoacids. Theor Exp Chem 57, 437–442 (2022). https://doi.org/10.1007/s11237-022-09713-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09713-w

Keywords

Navigation