Skip to main content
Log in

Fluid Penetration in a Deformable Permeable Web Moving Past a Stationary Rigid Solid Cylinder

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We present an analysis for the process of fluid infiltration into a deformable, thin and permeable web that moves in close proximity over a rigid and stationary solid cylinder. While this is a process of significant interest in a range of coating, printing and composites pultrusion processes, its hydrodynamics have received limited attention in the open literature. The flow in the film separating the web from the cylinder is described by lubrication theory, while fluid transfer into the web is governed by Darcy’s law. The deformation of the web at each position is a linear function of the local gap pressure; this is consistent with the assumption of a thin and rigidly supported web. Our results indicate that the web/fluid interface is forced away from the cylinder surface as it approaches it and bounces back downstream from the minimum separation point. This behavior produces a non-symmetric gap between the adjacent surfaces, and this is shown to have critical influence on the final amount of penetrating fluid. The extent of fluid penetration is also found to be affected by the web elasticity (expressed by the dimensionless Ne number) and permeability (expressed in dimensionless form via \(\hat{{K}})\) where under a specific Ne and \(\hat{{K}}\) combination a maximum penetration depth is obtained. Finally, we derive a closed-form asymptotic solution for the final infiltration depth in the limit of Ne \(<<\) 1 and \(\hat{{K}}<<\)1 and test its predictions against the above-mentioned numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Andersson, H.M., Lundström, T.S., Gebart, B.R.: Numerical model for vacuum infusion manufacturing of polymer composites. Int. J. Numer. Method. Heat. 13, 383–394 (2003)

    Article  Google Scholar 

  • Ascanio, G., Carreau, P.J., Brito-de la Fuente, E., Tanguy, P.A.: Forward deformable roll coating at high speed with Newtonian fluids. Chem. Eng. Res. Des. 82, 390–397 (2004)

    Article  Google Scholar 

  • Ascanio, G., Ruiz, G.: Measurement of pressure distribution in a deformable nip of counter-rotating rolls. Meas. Sci. Technol. 17, 2430–2436 (2006)

    Article  Google Scholar 

  • Barry, S., Aldis, G., Mercer, G.: Injection of fluid into a layer of deformable porous medium. Appl. Mech. Rev. 48, 722–726 (1995)

    Article  Google Scholar 

  • Bates, P.J., Kendall, J., Taylor, D., Cunningham, M.: Pressure build-up during melt impregnation. Compos. Sci. Technol. 62, 379–384 (2002)

    Article  Google Scholar 

  • Bates, P.J., Zou, X.P.: Polymer melt impregnation of glass roving. Int. Polym. Proc. 27, 376–386 (2002)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Courier Dover Publications, New York (1988)

    Google Scholar 

  • Benkreira, H., Edwards, M.F., Wilkinson, W.L.: A semi-empirical model of the forward roll coating flow of Newtonian fluids. Chem. Eng. Sci. 36, 423–427 (1981)

    Article  Google Scholar 

  • Benkreira, H., Edwards, M.F., Wilkinson, W.L.: Roll coating of purely viscous liquids. Chem. Eng. Sci. 36, 429–434 (1981)

    Article  Google Scholar 

  • Benkreira, H., Patel, R.: Direct gravure roll coating. Chem. Eng. Sci. 48, 2329–2335 (1993)

    Article  Google Scholar 

  • Bijsterbosch, H., Gaymans, R.J.: Impregnation of glass rovings with a polyamide melt. Part 1: impregnation bath. Compos. Part A-Appl. S. 4, 85–92 (1993)

    Google Scholar 

  • Carvalho, M.S., Scriven, L.E.: Deformable roll coating flows: steady state and linear perturbation analysis. J. Fluid Mech. 339, 143–172 (1997)

    Article  Google Scholar 

  • Carvalho, M.S., Scriven, L.E.: Flows in forward deformable roll coating gaps: comparison between spring and plane-strain models or roll cover. J. Comput. Phys. 138, 449–479 (1997)

    Article  Google Scholar 

  • Carvalho, M.S.: Effect of thickness and viscoelastic properties of roll cover on deformable roll coating flows. Chem. Eng. Sci. 58, 4323–4333 (2003)

    Article  Google Scholar 

  • Chen, K.S.A., Scriven, L.E.: Liquid penetration into a deformable porous substrate. Tappi J. 73, 151–161 (1990)

    Google Scholar 

  • Cohu, O., Magnin, A.: Forward roll coating of Newtonian fluids with deformable rolls: an experimental investigation. Chem. Eng. Sci 52, 1339–1347 (1997)

    Article  Google Scholar 

  • Coyle, D.J.: Forward roll coating with deformable rolls: a simple one dimensional elastohydrodynamic model. Chem. Eng. Sci. 43, 2673–2684 (1988)

    Article  Google Scholar 

  • Coyle, D.J., Macosko, C.W., Scriven, L.E.: The fluid dynamics of reverse roll coating. AIChE J. 36, 161–174 (1990)

    Article  Google Scholar 

  • Devisetti, S.K., Bousfield, D.W.: Fluid absorption during forward roll coating on porous webs. Chem. Eng. Sci. 65, 3528–3537 (2010)

    Article  Google Scholar 

  • Ding, X., Fuller, T.F., Harris, T.A.L.: Predicting fluid penetration during slot die coating onto porous substrates. Chem. Eng. Sci. 99, 67–75 (2013)

    Article  Google Scholar 

  • Ding, X., Ebin, J.P., Harris, T.A.L., Li, Z., Fuller, T.F.: Analytical models for predicting penetration depth during slot die coating onto porous media. AIChE J. 60, 4241–4252 (2014)

    Article  Google Scholar 

  • Farboodmanesh, S., Chen, J., Mead, J.L., White, K.D., Yesilalan, H.E., Laoulache, R., Warner, S.B.: Effect of coating thickness and penetration on shear behavior of coated fabrics. J. Elastom. Plast. 37, 197–227 (2005)

    Article  Google Scholar 

  • Gaymans, R.J., Wevers, E.: Impregnation of a glass fibre roving with a polypropylene melt in a pin assisted process. Compos. Part A-Appl. S. 29, 663–670 (1998)

    Article  Google Scholar 

  • Gibson, A.G., Månson, J.A.: Impregnation technology for thermoplastic matrix composites. Compos. Part A-Appl. S. 3, 223–233 (1992)

    Google Scholar 

  • Gostling, M.J., Savage, M.D., Young, A.E., Gaskell, P.H.: A model for deformable roll coating with negative gaps and incompressible compliant layers. J. Fluid Mech. 489, 155–184 (2003)

    Article  Google Scholar 

  • Hayes, R.E., Bertrand, F.H., Tanguy, P.A.: Modeling of fluid/paper interaction in the application nip of a film coater. Transport Porous Med 40, 55–72 (2000)

    Article  Google Scholar 

  • Hewson, R.W., Kapur, N., Gaskell, P.H.: A two-scale model for discrete cell gravure roll coating. Chem. Eng. Sci. 66, 3666–3674 (2011)

    Article  Google Scholar 

  • Jones, M.B., Fulford, G.R., Please, C.P., McElwain, D.L.S., Collins, M.J.: Elastohydrodynamics of the Eyelid Wiper. Bull. Math. Biol 70, 323–343 (2008)

    Article  Google Scholar 

  • Kapur, N.: A parametric study of direct gravure coating. Chem. Eng. Sci. 58, 2875–2882 (2003)

    Article  Google Scholar 

  • Leal, L.: Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Properties. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  • Lécuyer, H.A., Mmbaga, J.P., Hayes, R.E., Bertrand, F.H., Tanguy, P.A.: Modeling of forward roll coating flows with a deformable roll: application to non-Newtonian industrial coating formulations. Comput. Chem. Eng. 33, 1427–1437 (2009)

    Article  Google Scholar 

  • Lee, S., Na, Y.: Effect of roll patterns on the ink transfer in R2R printing process. Int. J. Precis. Eng. Man. 10, 123–130 (2009)

    Article  Google Scholar 

  • Lundström, T.S., Hellström, J.G.I., Frishfelds, V.: Transversal flow-induced deformation of fibres during composites manufacturing and the effect of permeability. J. Reinf. Plast. Comp. 32, 1129–1135 (2013)

    Article  Google Scholar 

  • Madasu, S., Cairncross, R.A.: Effect of substrate flexibility on dynamic wetting: a finite element model. Comput. Methods Appl. Mech. Engrgy 192, 2671–2702 (2003)

    Article  Google Scholar 

  • Madasu, S.: Effect of soluble surfactants on dynamic wetting of flexible substrates: a finite element study. Phys. Fluids 21, 122103 (2009)

    Article  Google Scholar 

  • Matilainen, K., Hämäläinen, T., Savolainen, A., Sipiläinen-Malm, T., Peltonen, J., Erho, T., Smolander, M.: Performance and penetration of laccase and ABST inks on various printing substrates. Colloids Surf. B 90, 119–128 (2012)

    Article  Google Scholar 

  • Middleman, S.: Modeling Axisymmetric Flows: Dynamics of Films. Jets and Drops, San Diego (1995)

    Google Scholar 

  • Nam, J., Carvalho, M.S.: Flow in tensioned-web-over-slot die coating: effect of die lip design. Chem. Eng. Sci. 65, 3957–3971 (2010)

    Article  Google Scholar 

  • Polychronopoulos, N.D., Papathanasiou, T.D.: Pin-assisted resin infiltration of porous substrates. Compos. Part A-Appl. S. 71, 126–135 (2015)

    Article  Google Scholar 

  • Ramon, G.Z., Huppert, H.E., Lister, J.R., Stone, H.A.: On the hydrodynamic interaction between a particle and a permeable surface. Phys. Fluids 25, 073103 (2013)

    Article  Google Scholar 

  • Romero, O.J., Suszynski, W.J., Scriven, L.E., Carvalho, M.S.: Low-flow limit in slot coating of dilute solutions of high molecular weight polymer. J. Non-Newt. Fluid Mech. 118, 137–156 (2004)

    Article  Google Scholar 

  • Sandström, A., Dam, H.F., Krebs, F.C., Edman, L.: Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat. Commun. 3, 1–5 (2012)

    Article  Google Scholar 

  • Shampine, L., Kierzenka, J., Reichelt, M.: Solving Boundary Values Problems for ordinary Differential Equations in MATLAB with bvp4C. The MathWorks Inc. http://www.mathworks.com/bvp_tutorial (2000)

  • Skotheim, J.M., Mahadevan, L.: Soft lubrication. Phys. Rev. Lett. 92, 245509 (2004)

    Article  Google Scholar 

  • Skotheim, J.M., Mahadevan, L.: Soft lubrication: the elastohydrodynamics of nonconforming and conforming contacts. Phys. Fluids 17, 092101 (2005)

    Article  Google Scholar 

  • Sullivan, T., Middleman, S., Keunings, R.: Use of a finite element method to interpret rheological effects in blade coating. AIChE J. 33, 2047–2056 (1987)

    Article  Google Scholar 

  • Toll, S.: Packing Mechanics of fiber reinforcements. Pol. Eng. Sci. 38, 1337–1350 (1998)

    Article  Google Scholar 

  • Yesilalan, H.E., Warner, S.B., Laoulache, R.: Penetration of blade-applied viscous coatings into yarns in a woven fabric. Text. Res. J. 80, 1930–1941 (2010)

    Article  Google Scholar 

  • Yin, X., Kumar, S.: Lubrication flow between a cavity and a flexible wall. Phys. Fluids 17, 063101 (2005)

    Article  Google Scholar 

  • Yin, X., Kumar, S.: Two-dimensional simulations of flow near a cavity and a flexible solid boundary. Phys. Fluids 18, 063103 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We thank one of the reviewers for valuable feedback on non-dimensionalization of the model equations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Papathanasiou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polychronopoulos, N.D., Papathanasiou, T.D. Fluid Penetration in a Deformable Permeable Web Moving Past a Stationary Rigid Solid Cylinder. Transp Porous Med 116, 393–411 (2017). https://doi.org/10.1007/s11242-016-0780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0780-1

Keywords

Navigation