Skip to main content
Log in

Anomalous Dispersion in Pore-Scale Simulations of Two-Phase Flow

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We investigate anomalous dispersion in steady-state two-phase flow though a random, artificial porous domain. A natural distribution of trapped wetting-phase fluid was obtained via two-phase lattice Boltzmann drainage simulations. To avoid spurious velocities, accurate inter-pore velocity fields were derived via additional one-phase lattice Boltzmann simulations incorporating slip boundary conditions imposed at various interfaces. The nature of the active dispersion at various timescales was subsequently studied via random walk particle tracking. For our system, results show persistent anomalous dispersion that depends strongly on the assumed molecular diffusivity and the initial positions of tracer particles. Imposing slip versus no-slip boundary conditions on fluid–fluid interfaces made no observable difference to results, indicating that observed anomalous dispersion resulted primarily from the complex flow network induced by the trapped fluid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bachu, S.: Sequestration of \(\text{ CO }_2\) in geological media: criteria and approach for site selection in response to climate change. Energy Convers. Manag. 41(9), 953–970 (2000)

    Article  Google Scholar 

  • Berglund, S., Bosson, E., Selroos, J.O., Sassner, M.: Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden. Ambio 42(4), 435–446 (2013)

    Article  Google Scholar 

  • Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44(2) (2006). https://doi.org/10.1029/2005RG000178

  • Berning, T., Djilali, N.: A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J. Electrochem. Soc. 150(12), A1589–A1598 (2003)

    Article  Google Scholar 

  • Bijeljic, B., Blunt, M.J.: Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. (2006). https://doi.org/10.1029/2005WR004578

  • Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Insights into non-Fickian solute transport in carbonates. Water Resour. Res. 49(5), 2714–2728 (2013a)

    Article  Google Scholar 

  • Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J.: Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E 87(1), 013011 (2013b)

    Article  Google Scholar 

  • Bolster, D., Valdés-Parada, F.J., LeBorgne, T., Dentz, M., Carrera, J.: Mixing in confined stratified aquifers. J. Contam. Hydrol. 120, 198–212 (2011)

    Article  Google Scholar 

  • Bolster, D., Méheust, Y., Le Borgne, T., Bouquain, J., Davy, P.: Modeling preasymptotic transport in flows with significant inertial and trapping effects-the importance of velocity correlations and a spatial Markov model. Adv. Water Resour. 70, 89–103 (2014)

    Article  Google Scholar 

  • Bouwer, H.: Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J. 10(1), 121–142 (2002)

    Article  Google Scholar 

  • Brenner, H.: Macrotransport Processes. Elsevier, New York (2013)

    Google Scholar 

  • Bromly, M., Hinz, C.: Non-Fickian transport in homogeneous unsaturated repacked sand. Water Resour. Res. (2004). https://doi.org/10.1029/2003WR002579

  • Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)

    Article  Google Scholar 

  • Connington, K., Lee, T.: A review of spurious currents in the lattice Boltzmann method for multiphase flows. J. Mech. Sci. Technol. 26(12), 3857–3863 (2012)

    Article  Google Scholar 

  • Daly, E., Porporato, A.: A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environ. Eng. Sci. 22(1), 9–24 (2005)

    Article  Google Scholar 

  • De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A.M., Bolster, D., Davy, P.: Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110(18), 184502 (2013)

    Article  Google Scholar 

  • Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120, 1–17 (2011)

    Article  Google Scholar 

  • Dentz, M., Kang, P.K., Comolli, A., Le Borgne, T., Lester, D.R.: Continuous time random walks for the evolution of Lagrangian velocities. Phys. Rev. Fluids 1(7), 074004 (2016)

    Article  Google Scholar 

  • de Barros, F.P., Bolster, D., Sanchez-Vila, X., Nowak, W.: A divide and conquer approach to cope with uncertainty, human health risk, and decision making in contaminant hydrology. Water Resour. Res. (2011). https://doi.org/10.1029/2010WR009954

  • de Barros, F., Fernàndez-Garcia, D., Bolster, D., Sanchez-Vila, X.: A risk-based probabilistic framework to estimate the endpoint of remediation: concentration rebound by rate-limited mass transfer. Water Resour. Res. 49(4), 1929–1942 (2013)

    Article  Google Scholar 

  • Fernández-Arévalo, T., Lizarralde, I., Grau, P., Ayesa, E.: New systematic methodology for incorporating dynamic heat transfer modelling in multi-phase biochemical reactors. Water Res. 60, 141–155 (2014)

    Article  Google Scholar 

  • Galliero, G.: Lennard-Jones fluid-fluid interfaces under shear. Phys. Rev. E (2010). https://doi.org/10.1103/PhysRevE.81.056306

  • Gómez-Hernández, J.J., Butler, J., Fiori, A., Bolster, D., Cvetkovic, V., Dagan, G., Hyndman, D.: Introduction to special section on modeling highly heterogeneous aquifers: lessons learned in the last 30 years from the MADE experiments and others. Water Resour. Res. 53(4), 2581–2584 (2017)

    Article  Google Scholar 

  • Guillon, V., Fleury, M., Bauer, D., Neel, M.C.: Superdispersion in homogeneous unsaturated porous media using NMR propagators. Phys. Rev. E 87(4), 043007 (2013)

    Article  Google Scholar 

  • Higdon, J.J.L.: Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities. J. Fluid Mech. 159, 195–226 (1985)

    Article  Google Scholar 

  • Hu, Y., Zhang, X., Wang, W.: Boundary conditions at the liquid-liquid interface in the presence of surfactants. Langmuir 26(13), 10693–10702 (2010)

    Article  Google Scholar 

  • Iglauer, S.: Dissolution trapping of carbon dioxide in reservoir formation brine—a carbon storage mechanism. In: Mass Transfer — Advanced Aspects, InTech, pp. 233–262 (2011)

  • Jiang, F., Tsuji, T.: Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images. Water Resour. Res. 53(1), 11–32 (2017)

    Article  Google Scholar 

  • Jiang, F., Tsuji, T., Hu, C.: Elucidating the role of interfacial tension for hydrological properties of two-phase flow in natural sandstone by an improved lattice Boltzmann method. Transp. Porous Media 104(1), 205–229 (2014)

    Article  Google Scholar 

  • Jiménez-Martínez, J., Anna, Pd, Tabuteau, H., Turuban, R., Borgne, T.L., Méheust, Y.: Pore-scale mechanisms for the enhancement of mixing in unsaturated porous media and implications for chemical reactions. Geophys. Res. Lett. 42(13), 5316–5324 (2015)

    Article  Google Scholar 

  • Jiménez-Martínez, J., Porter, M.L., Hyman, J.D., Carey, J.W., Viswanathan, H.S.: Mixing in a three-phase system: enhanced production of oil-wet reservoirs by \(\text{ CO }_2\) injection. Geophys. Res. Lett. 43(1), 196–205 (2016)

    Article  Google Scholar 

  • Kang, P.K., Anna, P., Nunes, J.P., Bijeljic, B., Blunt, M.J., Juanes, R.: Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media. Geophys. Res. Lett. 41(17), 6184–6190 (2014)

    Article  Google Scholar 

  • Kazemifar, F., Blois, G., Kyritsis, D.C., Christensen, K.T.: Quantifying the flow dynamics of supercritical \(\text{ CO }_2\)-water displacement in a 2D porous micromodel using fluorescent microscopy and microscopic PIV. Adv. Water Resour. 95, 352–368 (2016)

    Article  Google Scholar 

  • Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Latva-Kokko, M., Rothman, D.H.: Static contact angle in lattice Boltzmann models of immiscible fluids. Phys. Rev. E 72, 046701 (2005). https://doi.org/10.1103/PhysRevE.72.046701

    Article  Google Scholar 

  • Le Borgne, T., Bolster, D., Dentz, M., Anna, P., Tartakovsky, A.: Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach. Water Resour. Res. 47(12) (2011). https://doi.org/10.1029/2011WR010457

  • Leclaire, S., Reggio, M., Trépanier, J.Y.: Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model. Appl. Math. Model. 36(5), 2237–2252 (2012)

    Article  Google Scholar 

  • Mercer, J.W., Cohen, R.M.: A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J. Contam. Hydrol. 6(2), 107–163 (1990)

    Article  Google Scholar 

  • Nützmann, G., Maciejewski, S., Joswig, K.: Estimation of water saturation dependence of dispersion in unsaturated porous media: experiments and modelling analysis. Adv. Water Res. 25(5), 565–576 (2002)

    Article  Google Scholar 

  • Pan, F., Acrivos, A.: Steady flows in rectangular cavities. J. Fluid Mech. 28(4), 643–655 (1967)

    Article  Google Scholar 

  • Qian, Y., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier—Stokes equation. EPL (Euro. Lett.) 17(6), 479–484 (1992)

    Article  Google Scholar 

  • Ramstad, T., Idowu, N., Nardi, C., Øren, P.E.: Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks. Transp. Porous Media 94(2), 487–504 (2012)

    Article  Google Scholar 

  • Raoof, A., Hassanizadeh, S.: Saturation-dependent solute dispersivity in porous media: pore-scale processes. Water Resour. Res. 49(4), 1943–1951 (2013)

    Article  Google Scholar 

  • Risken, H.: Fokker–planck equation. In: The Fokker–Planck Equation, Springer, pp 63–95 (1996)

  • Sato, T., Tanahashi, H., Loáiciga, H.A.: Solute dispersion in a variably saturated sand. Water Resour. Res. (2003). https://doi.org/10.1029/2002WR001649

  • Schönecker, C., Hardt, S.: Longitudinal and transverse flow over a cavity containing a second immiscible fluid. J. Fluid Mech. 717, 376–394 (2013)

    Article  Google Scholar 

  • Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. (2003). https://doi.org/10.1029/2003WR002141

  • Singh, S., Jiang, F., Tsuji, T.: Impact of the kinetic boundary condition on porous media flow in the lattice Boltzmann formulation. Phys. Rev. E 96, 013303 (2017). https://doi.org/10.1103/PhysRevE.96.013303

    Article  Google Scholar 

  • Singha, K., Day-Lewis, F.D., Lane, J.: Geoelectrical evidence of bicontinuum transport in groundwater. Geophys. Res. Lett. 34(12) (2007). https://doi.org/10.1029/2007GL030019

  • Sund, N., Bolster, D., Mattis, S., Dawson, C.: Pre-asymptotic transport upscaling in inertial and unsteady flows through porous media. Transp. Porous Media 109(2), 411–432 (2015)

    Article  Google Scholar 

  • Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 219(1137), 186–203 (1953)

    Google Scholar 

  • Tölke, J.: Lattice Boltzmann simulations of binary fluid flow through porous media. Philos. Transact. R. Soc. Lond. A: Math. Phys. Eng. Sce 360(1792), 535–545 (2002)

    Article  Google Scholar 

  • Vanderborght, J., Vereecken, H.: Review of dispersivities for transport modeling in soils. Vadose Zone J. 6(1), 29–52 (2007)

    Article  Google Scholar 

  • Whitaker, S.: The Method of Volume Averaging, vol. 13. Springer, Berlin (2013)

    Google Scholar 

  • Wildenschild, D., Jensen, K.H.: Laboratory investigations of effective flow behavior in unsaturated heterogeneous sands. Water Resour. Res. 35(1), 17–27 (1999)

    Article  Google Scholar 

  • Wood, B.D.: Inertial effects in dispersion in porous media. Water Resour. Res. (2007). https://doi.org/10.1029/2006WR005790

  • Zhang, Y., Benson, D.A.: Lagrangian simulation of multidimensional anomalous transport at the MADE site. Geophys. Res. Lett. (2008). https://doi.org/10.1029/2008GL033222

Download references

Acknowledgements

This research was made possible by a Kyushu University, International Institute for Carbon Neutral Energy Research (\(\hbox {I}^{2}\hbox {CNER}\)), Competitive Funding Initiative on Applied Math for Energy Project Grant. We would also like to express thanks for financial support via NSF Grants EAR-1351625, EAR-1446236 and CBET-1803989, as well as a JSPS Grant-in-Aid for Young Scientists (16K18331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimetre Triadis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triadis, D., Jiang, F. & Bolster, D. Anomalous Dispersion in Pore-Scale Simulations of Two-Phase Flow. Transp Porous Med 126, 337–353 (2019). https://doi.org/10.1007/s11242-018-1155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1155-6

Keywords

Navigation