Skip to main content
Log in

Synthesis, structural topology, DFT, and photoluminescence properties of Sm(III) and octacyanomolybdate(V) building-block-based 1-D chain complex

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A new one-dimensional cyanide-based coordination polymer comprising Sm(III) and octacyanomolybdate(V) building blocks was prepared and characterized through single-crystal X-ray diffraction and elemental analyses. The new compound consisted of one-dimensional chains of [Sm(terpy)(DMF)4] [Mo(CN)8] (complex 1) (terpy: 2,2′:6′,2′′-terpyridine; DMF: N,N-dimethylformamide), where each Mo(CN)8 entity served as a bis-monodentate bridging ligand of two Sm(III) ions alternately through two of its six cyanide groups at cis positions. The corresponding chains were formed by hydrogen bonds, and van der Waals interactions to form a two-dimensional supramolecular structure that stabilized the entire molecule. Considering all the intermolecular interactions during the simplification procedure, we obtained a description of the molecular packing. The calculation results indicated that the underlying net corresponds to a new topology with the following point symbol {337.468.530.6}{38.42}. Density functional theory studies were also performed to elucidate the electronic structure within the entire complex. The good luminescence of the complex makes it a suitable material for construction of photoluminescent materials, to explore the intrinsic optical properties of lanthanides, and in sensing for detection of different hazardous/explosive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chelebaeva E et al (2008) A luminescent and magnetic cyano-bridged Tb3+−Mo5+ coordination polymer: toward multifunctional materials. Inorg Chem 47:775–777. https://doi.org/10.1021/ic702192k

    Article  CAS  PubMed  Google Scholar 

  2. Muddassir M (2020) Syntheses, structural characterization, and thermal behavior of cyanide-bridged [2 + 2]-type tetranuclear rectangle-based molecule constructed from Tm(III) and hexacyanocobaltate(III). Trans Met Chem 45:317–323. https://doi.org/10.1007/s11243-020-00382-z

    Article  CAS  Google Scholar 

  3. Muddassir M, Alarifi A, Afzal M, Sepay N (2020) Newly designed Mn(III)–W(V) bimetallic assembly built by manganese (III) Schiff–base and octacyanotungstate(V) building blocks: structural topologies, and magnetic features. Appl Organomet Chem n/a:e5914. https://doi.org/10.1002/aoc.5914

    Article  CAS  Google Scholar 

  4. Tong Y-Z et al (2013) Nine cyanide-bridged bimetallic magnetic chains derived from octacyanomolybdate(v) and lanthanide(iii) building blocks. CrystEngComm 15:9906–9915. https://doi.org/10.1039/C3CE41048J

    Article  CAS  Google Scholar 

  5. Chelebaeva E et al (2009) Luminescent and magnetic cyano-bridged coordination polymers containing 4d–4f ions: toward multifunctional materials. Inorg Chem 48:5983–5995. https://doi.org/10.1021/ic900378d

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez A et al (2005) Hexacyanocobaltate(III) anions as precursors of Co(II)–Ni(II) cyano-bridged multidimensional assemblies: hydrothermal syntheses, crystal and powder X-ray structures, and magnetic properties. Inorg Chem 44:8399–8406. https://doi.org/10.1021/ic0511672

    Article  CAS  PubMed  Google Scholar 

  7. Tanase S, Ferbinteanu M, Cimpoesu F (2011) Rationalization of the lanthanide-ion-driven magnetic properties in a series of 4f–5d cyano-bridged chains. Inorg Chem 50:9678–9687. https://doi.org/10.1021/ic201427w

    Article  CAS  PubMed  Google Scholar 

  8. Chorazy S, Wyczesany M, Sieklucka B (2017) Lanthanide photoluminescence in heterometallic polycyanidometallate-based coordination networks. Molecules 22:1902. https://doi.org/10.3390/molecules22111902

    Article  CAS  PubMed Central  Google Scholar 

  9. Long J, Chamoreau L-M, Mathonière C, Marvaud V (2009) Photoswitchable heterotrimetallic chain based on octacyanomolybdate, copper, and nickel: synthesis, characterization, and photomagnetic properties. Inorg Chem 48:22–24. https://doi.org/10.1021/ic801901j

    Article  CAS  PubMed  Google Scholar 

  10. Muddassir M (2020) A new 1D Cu(II)-W(CN)8 based coordination polymer: crystallographic structural architecture, Hirshfeld surface, DFT and luminescent analyses. J Organomet Chem. https://doi.org/10.1016/j.jorganchem.2020.121499

    Article  Google Scholar 

  11. Qian S-Y, Zhou H, Yuan A-H, Song Y (2011) Syntheses, structures, and magnetic properties of five novel octacyanometallate-based lanthanide complexes with helical chains. Cryst Growth Des 11:5676–5681. https://doi.org/10.1021/cg201217a

    Article  CAS  Google Scholar 

  12. Gao Y et al (2018) Cyanide-bridged coordination polymers constructed from lanthanide ions and octacyanometallate building-blocks. Inorg Chem Front 5:1967–1977. https://doi.org/10.1039/C8QI00357B

    Article  CAS  Google Scholar 

  13. Chorazy S, Rams M, Nakabayashi K, Sieklucka B, Ohkoshi S-I (2016) White light emissive DyIII single-molecule magnets sensitized by diamagnetic [CoIII(CN)6]3- linkers. Chem A Eur J 22:7371–7375. https://doi.org/10.1002/chem.201601244

    Article  CAS  Google Scholar 

  14. Prins F et al (2007) Long-range magnetic ordering in a TbIII–MoV cyanido-bridged quasi-one-dimensional complex. Angew Chem Int Ed 46:6081–6084. https://doi.org/10.1002/anie.200701847

    Article  CAS  Google Scholar 

  15. Wang Z-X et al (2006) A sodalite-like framework based on octacyanomolybdate and neodymium with guest methanol molecules and neodymium octahydrate ions. Angew Chem Int Ed 45:3287–3291. https://doi.org/10.1002/anie.200600455

    Article  CAS  Google Scholar 

  16. Ishikawa N, Sugita M, Ishikawa T, Koshihara S-Y, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695. https://doi.org/10.1021/ja029629n

    Article  CAS  PubMed  Google Scholar 

  17. Andruh M, Costes J-P, Diaz C, Gao S (2009) 3d–4f combined chemistry: synthetic strategies and magnetic properties. Inorg Chem 48:3342–3359. https://doi.org/10.1021/ic801027q

    Article  CAS  PubMed  Google Scholar 

  18. Stoian SA et al (2010) Mössbauer, electron paramagnetic resonance, and magnetic susceptibility studies on members of a new family of cyano-bridged 3d–4f complexes. Demonstration of anisotropic exchange in a Fe–Gd complex. Inorg Chem 49:3387–3401. https://doi.org/10.1021/ic902516r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alexandrov EV, Virovets AV, Blatov VA, Peresypkina EV (2015) Topological motifs in cyanometallates: from building units to three-periodic frameworks. Chem Rev 115:12286–12319. https://doi.org/10.1021/acs.chemrev.5b00320

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y et al (2020) Cyanometallate-bridged didysprosium single-molecule magnets constructed with single-ion magnet building block. Inorg Chem 59:687–694. https://doi.org/10.1021/acs.inorgchem.9b02948

    Article  CAS  PubMed  Google Scholar 

  21. Arczyński M, Stanek J, Sieklucka B, Dunbar KR, Pinkowicz D (2019) Site-selective photoswitching of two distinct magnetic chromophores in a propeller-like molecule to achieve four different magnetic states. J Am Chem Soc 141:19067–19077. https://doi.org/10.1021/jacs.9b09576

    Article  CAS  PubMed  Google Scholar 

  22. Zhou H et al (2017) A series of lanthanide(III)-bpdo-octacyanotungstate(V) compounds (bpdo = 4,4′-Bipyridine-N, N′-dioxide) involving the structural transformation from ion pair to three-dimensional pillared layer via a two-dimensional layer. Cryst Growth Des 17:6523–6530. https://doi.org/10.1021/acs.cgd.7b01196

    Article  CAS  Google Scholar 

  23. Nakabayashi K et al (2014) Cesium cyano-bridged CoII–MV (M = Mo and W) layered frameworks exhibiting high thermal durability and metamagnetism. Cryst Growth Des 14:6093–6100. https://doi.org/10.1021/cg501250p

    Article  CAS  Google Scholar 

  24. Cao F et al (2016) Ferromagnetic polarization: the quantum picture of switching on/off single-molecule magnetism. Inorg Chem 55:5914–5923. https://doi.org/10.1021/acs.inorgchem.6b00255

    Article  CAS  PubMed  Google Scholar 

  25. Qian J et al (2014) A three-dimensional hetero-bimetallic coordination polymer with unusual (4,5)-connected topology and ferrimagnetic property based on octacyanotungstate and polydentate ligand. Cryst Growth Des 14:2288–2295. https://doi.org/10.1021/cg4019053

    Article  CAS  Google Scholar 

  26. Podgajny R et al (2003) Coordination polymers based on octacyanometalates(iv{,}v) (M = Mo{,} W) and aliphatic polyamine copper(ii) tectons with [N3] donor atom sets. Dalton Trans. https://doi.org/10.1039/b306422k

    Article  Google Scholar 

  27. Sieklucka B, Podgajny R, Przychodzeń P, Korzeniak T (2005) Engineering of octacyanometalate-based coordination networks towards functionality. Coord Chem Rev 249:2203–2221. https://doi.org/10.1016/j.ccr.2005.02.024

    Article  CAS  Google Scholar 

  28. Nowicka B et al (2012) The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord Chem Rev 256:1946–1971. https://doi.org/10.1016/j.ccr.2012.04.008

    Article  CAS  Google Scholar 

  29. Przychodzeń P, Korzeniak T, Podgajny R, Sieklucka B (2006) Supramolecular coordination networks based on octacyanometalates: from structure to function. Coord Chem Rev 250:2234–2260. https://doi.org/10.1016/j.ccr.2006.01.026

    Article  CAS  Google Scholar 

  30. Corpinot MK, Bučar D-K (2019) A practical guide to the design of molecular crystals. Cryst Growth Des 19:1426–1453. https://doi.org/10.1021/acs.cgd.8b00972

    Article  CAS  Google Scholar 

  31. Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426. https://doi.org/10.1021/cr500411q

    Article  CAS  PubMed  Google Scholar 

  32. Ma S-L, Ren S, Ma Y, Liao D-Z (2009) Sheet-like of MoV-SmIII assembly containing [MoV(CN)8]3– and Sm3+ ions as building blocks. J Chem Sci 121:421–427. https://doi.org/10.1007/s12039-009-0049-0

    Article  CAS  Google Scholar 

  33. Yang X-Z et al (2012) Syntheses, structures and magnetic properties of cyano-bridged Sm(III)M(V) (M = Mo, W) assemblies with zigzag chains. Inorg Chem Commun 24:40–42. https://doi.org/10.1016/j.inoche.2012.07.047

    Article  CAS  Google Scholar 

  34. Muddassir M et al (2013) Ion-induced diversity in structure and magnetic properties of hexacyanometalate–lanthanide bimetallic assemblies. CrystEngComm 15:10541–10549. https://doi.org/10.1039/C3CE41704B

    Article  CAS  Google Scholar 

  35. Isci H, Roy Mason W (2004) Electronic absorption and MCD spectra for octacyanometallate complexes M(CN)8n, M = Mo(IV), W(IV), n = 4 and Mo(V), W(V), n = 3. Inorg Chim Acta 357:4065–4072. https://doi.org/10.1016/j.ica.2003.10.024

    Article  CAS  Google Scholar 

  36. Chorazy S, Arczynski M, Nakabayashi K, Sieklucka B, Ohkoshi S-I (2015) Visible to near-infrared emission from LnIII(Bis-oxazoline)–[MoV(CN)8] (Ln = Ce–Yb) magnetic coordination polymers showing unusual lanthanide-dependent sliding of cyanido-bridged layers. Inorg Chem 54:4724–4736. https://doi.org/10.1021/acs.inorgchem.5b00040

    Article  CAS  PubMed  Google Scholar 

  37. Chorazy S et al (2014) Multifunctionality in bimetallic LnIII[WV(CN)8]3– (Ln = Gd, Nd) coordination helices: optical activity, luminescence, and magnetic coupling. Chem A Eur J 20:7144–7159. https://doi.org/10.1002/chem.201304772

    Article  CAS  Google Scholar 

  38. Carter KP, Pope SJA, Cahill CL (2014) A series of Ln-p-chlorobenzoic acid–terpyridine complexes: lanthanide contraction effects, supramolecular interactions and luminescent behavior. CrystEngComm 16:1873–1884. https://doi.org/10.1039/C3CE42267D

    Article  CAS  Google Scholar 

  39. de Bettencourt-Dias A (2007) Lanthanide-based emitting materials in light-emitting diodes. Dalton Trans. https://doi.org/10.1039/b702341c

    Article  PubMed  Google Scholar 

  40. Bünzli J-CG (2006) Benefiting from the unique properties of lanthanide ions. Acc Chem Res 39:53–61. https://doi.org/10.1021/ar0400894

    Article  CAS  PubMed  Google Scholar 

  41. Song S, Li X, Zhang Y-H, Huo R, Ma D (2014) White light emission by a lanthanide doped Sm(iii) framework constructed from 4-sulfobenzoate and 1H-imidazo[4,5-f][1,10]-phenanthroline. Dalton Trans 43:5974–5977. https://doi.org/10.1039/C3DT53139B

    Article  CAS  PubMed  Google Scholar 

  42. Singh UP, Goel N, Singh G, Srivastava P (2012) Syntheses, structural and thermal studies of Eu(III) and Gd(III) complexes with 2,6-dinitrophenol and 1,10-phenanthroline/2,2′-bipyridine ligands. Inorg Chim Acta 387:294–307. https://doi.org/10.1016/j.ica.2012.02.009

    Article  CAS  Google Scholar 

  43. Ma X, Li X, Cha Y-E, Jin L-P (2012) Highly thermostable one-dimensional lanthanide(III) coordination polymers constructed from benzimidazole-5,6-dicarboxylic acid and 1,10-phenanthroline: synthesis, structure, and tunable white-light emission. Cryst Growth Des 12:5227–5232. https://doi.org/10.1021/cg300932a

    Article  CAS  Google Scholar 

  44. Garino C et al (2007) Spectroscopic and computational studies of a Ru(II) terpyridine complex: the importance of weak intermolecular forces to photophysical properties. Inorg Chem 46:8752–8762. https://doi.org/10.1021/ic7010343

    Article  CAS  PubMed  Google Scholar 

  45. Leipoldt JG, Bok LDC, Cilliers PJ (1974) The preparation of potassium octacyanotungstate(IV) dihydrate. Z Anorg Allg Chem 407:350–352. https://doi.org/10.1002/zaac.19744070311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Deputyship for Research and Innovation, Ministry of Education, Saudi Arabia for funding this research work through project no. IFKSURG-1440-076. The authors also thank the Deanship of Scientific Research and RSSU at King Saud University for technical support and are grateful for the positive and highly valuable suggestions from the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Muddassir.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muddassir, M., Alarifi, A. & Afzal, M. Synthesis, structural topology, DFT, and photoluminescence properties of Sm(III) and octacyanomolybdate(V) building-block-based 1-D chain complex. Transit Met Chem 46, 129–137 (2021). https://doi.org/10.1007/s11243-020-00429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00429-1

Navigation