Skip to main content
Log in

Supported Pd Nanoparticles for Carbon–Carbon Coupling Reactions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We intent to present an overview of the available catalysts for the carbon–carbon cross-coupling reactions based on supported palladium (Pd) nanoparticles (NPs). We begin this perspective with a brief introduction about the cross-coupling reactions and the mechanistic implications of using Pd NPs as catalyst, i.e. heterogeneous versus homogeneous catalysis, then we summarize some of the most versatile Pd supported catalysts as a function of its nature. The supported catalysts have been classified in inorganic, organic and hybrid supports. Finally we outline the perspectives for the development of new Pd supported catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yin L, Liebscher J (2007) Chem Rev 107:133–173

    Article  CAS  Google Scholar 

  2. Molnár Á (2011) Chem Rev 111:2251–2320

    Article  Google Scholar 

  3. Balanta A, Godard C, Claver C (2011) Chem Soc Rev 40:4973–4985

    Article  CAS  Google Scholar 

  4. Fihri A, Bouhrara M, Nekoueishahraki B, Basset JM, Polshettiwar V (2011) Chem Soc Rev 40:5181–5203

    Article  CAS  Google Scholar 

  5. Pérez-Lorenzo M (2012) J Phys Chem Lett 3:167–174

    Article  Google Scholar 

  6. Pagliaro M, Pandarus V, Ciriminna R, Béland F, Carà PD (2012) ChemCatChem 4:432–445

    Article  CAS  Google Scholar 

  7. Narayanan R (2010) Molecules 15:2124–2138

    Article  CAS  Google Scholar 

  8. Djakovitch L, Koehler K, de Vries JG (2008) Nanoparticles and catalysis. Wiley-VCH, Weinheim, pp 303–348

    Google Scholar 

  9. Wu XF, Anbarasan P, Neumann H, Beller M (2010) Angew Chem Int Ed 49:9047–9050

    Article  CAS  Google Scholar 

  10. Astruc D (2007) Inorg Chem 46:1884–1894

    Article  CAS  Google Scholar 

  11. Ananikov VP, Beletskaya IP (2012) Organometallics 31:1595–1604

    Article  CAS  Google Scholar 

  12. Phan NTS, Van Der Sluys M, Jones CW (2006) Adv Synth Catal 348:609–679

    Article  CAS  Google Scholar 

  13. Farina V (2004) Adv Synth Catal 346:1553–1582

    Article  CAS  Google Scholar 

  14. Sheldon RA, Wallau M, Arends IWCE, Schuchardt U (1998) Acc Chem Res 31:485–493

    Article  CAS  Google Scholar 

  15. Rebek J, Gavina F (1974) J Am Chem Soc 96:7112–7114

    Article  CAS  Google Scholar 

  16. Rebek J, Brown D, Zimmerman S (1975) J Am Chem Soc 97:454–455

    Article  CAS  Google Scholar 

  17. Crudden CM, Sateesh M, Lewis R (2005) J Am Chem Soc 127:10045–10050

    Article  CAS  Google Scholar 

  18. Anton DR, Crabtree RH (1983) Organometallics 2:855–859

    Article  CAS  Google Scholar 

  19. Foley P, Dicosimo R, Whitesides GM (1980) J Am Chem Soc 102:6713–6725

    Article  CAS  Google Scholar 

  20. Richardson JM, Jones CW (2006) Adv Synth Catal 348:1207–1216

    Article  CAS  Google Scholar 

  21. Pagliaro M, Pandarus V, Béland F, Ciriminna R, Palmisano G, Cará PD (2011) Catal Sci Technol 1:736–739

    Article  Google Scholar 

  22. Ciriminna R, Pandarus V, Gingras G, Béland F, Cará PD, Pagliaro M (2012) RSC Adv 2:10798–10804

    Article  CAS  Google Scholar 

  23. Muñoz JM, Alcázar J, de la Hoz A, Díaz-Ortiz A (2012) Adv Synth Catal 354:3456–3460

    Article  Google Scholar 

  24. Dutta P, Sarkar A (2011) Adv Synth Catal 353:2814–2822

    Article  CAS  Google Scholar 

  25. Saffarzadeh-Matin S, Kerton FM, Lynama JM, Raynerc CM (2006) Green Chem 8(965):971

    Google Scholar 

  26. Bernini R, Cacchi S, Fabrizi G, Forte G, Petrucci F, Prastaro A, Niembro S, Shafird A, Vallribera A (2010) Green Chem 12:150–158

    Article  CAS  Google Scholar 

  27. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem Int Ed 45:3216–3251

    Article  CAS  Google Scholar 

  28. Erathodiyil N, Ooi S, Seayad AM, Han Y, Lee SS, Ying JY (2008) Chem Eur J 14:3118–3125

    Article  CAS  Google Scholar 

  29. Mehnert CP, Ying JY (1997) Chem Commun 2215–2216

  30. Mehnert CP, Weaver DW, Ying JY (1998) J Am Chem Soc 120:12289–12296

    Article  CAS  Google Scholar 

  31. Wang P, Lu Q, Li J (2010) Mater Res Bull 45:129–134

    Article  CAS  Google Scholar 

  32. Wang P, Zheng X (2011) Powder Technol 210:115–121

    Article  CAS  Google Scholar 

  33. Wang P, Lu Q, Li J (2009) Catal Lett 131:444–450

    Article  CAS  Google Scholar 

  34. Djakovitch L, Koehler K (2001) J Am Chem Soc 123:5990–5999

    Article  CAS  Google Scholar 

  35. Durap F, Rakap M, Aydemira M, Zkar S (2010) Appl Catal A 382:339–344

    Article  CAS  Google Scholar 

  36. Trifiro F, Vaccari A (1996) Comprehensive supramolecular chemistry, vol 7. Pergamon/Elsevier Science, Oxford, p 251

    Google Scholar 

  37. Choudary BM, Madhi S, Chowdari NS, Kantam ML, Sreedhar B (2002) J Am Chem Soc 124:14127–14136

    Article  CAS  Google Scholar 

  38. Kogan V, Aizenshtat Z, Popovitz-Biro R, Neumann R (2002) Org Lett 20(3529):3532

    Google Scholar 

  39. Kantam ML, Roy S, Roy M, Sreedhar B, Choudary BM (2005) Adv Synth Catal 347:2002–2008

    Article  CAS  Google Scholar 

  40. Wagner M, Köhler K, Djakovitch L, Weinkauf S, Hagen V, Muhler M (2000) Top Catal 13:319–326

    Article  CAS  Google Scholar 

  41. Panziera N, Pertici P, Barazzone L, Caporusso AM, Vitulli G, Salvadori P, Borsacchi S, Geppi M, Veracini CA, Martra G, Bertinetti L (2007) J Catal 246:351–361

    Article  CAS  Google Scholar 

  42. Zhang P, Weng Z, Guo J, Wang C (2011) Chem Mater 23:5243–5249

    Article  CAS  Google Scholar 

  43. Wen F, Zhang W, Wei G, Wang Y, Zhang J, Zhang M, Shi L (2008) Chem Mater 20:2144–2150

    Article  CAS  Google Scholar 

  44. Fujii S, Matsuzawa S, Hamasaki H, Nakamura Y, Bouleghlimat A, Buurma NJ (2012) Langmuir 28:2436–2447

    Article  CAS  Google Scholar 

  45. Ogasawara S, Kato S (2010) J Am Chem Soc 132:4608–4613

    Article  CAS  Google Scholar 

  46. Park CM, Kwon MS, Park J (2006) Synthesis 22:3790–3794

    Article  Google Scholar 

  47. Li S, Wang J, Kou Y, Zhang S (2010) Chem Eur J 16:1812–1818

    Article  CAS  Google Scholar 

  48. Tamami B, Ghasemi S (2010) J Mol Catal A 332:98–105

    Google Scholar 

  49. Mondal J, Modak A, Bhaumik A (2011) J Mol Catal A 350:40–48

    Article  CAS  Google Scholar 

  50. Yuan B, Pan Y, Li Y, Yin B, Jiang H (2010) Angew Chem Int Ed 49:4054–4058

    Article  CAS  Google Scholar 

  51. Desforges A, Backov R, Deleuze H, Mondain-Monval O (2005) Adv Funct Mater 15:1695–1698

    Article  Google Scholar 

  52. Primo A, Liebel M, Quignard F (2009) Chem Mater 21:621–627

    Article  CAS  Google Scholar 

  53. Chtchigrovsky M, Lin Y, Ouchaou K, Chaumontet M, Robitzer M, Quignard F, Taran F (2012) Chem Mater 24:1505–1510

    Article  CAS  Google Scholar 

  54. Skjak-Braek G, Grasdalen H, Smidsod O (1989) Carbohydr Polym 10:31–34

    Article  Google Scholar 

  55. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R (2009) J Am Chem Soc 131:8262–8270

    Article  CAS  Google Scholar 

  56. Hariprasad E, Radhakrishnan TP (2012) ACS Catal 2:1179–1186

    Article  CAS  Google Scholar 

  57. Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL (2007) Angew Chem Int Ed 46:7251–7254

    Article  CAS  Google Scholar 

  58. Laska U, Frost CG, Price GJ, Plucinski PK (2009) J Catal 268:318–328

    Article  CAS  Google Scholar 

  59. Zhou S, Johnson M, Veinot JGC (2010) Chem Commun 46:2411–2413

    Article  CAS  Google Scholar 

  60. Zhang F, Jin J, Zhong X, Li S, Niu J, Li R, Ma J (2011) Green Chem 13:1238–1243

    Article  CAS  Google Scholar 

  61. Amali AJ, Rana RK (2009) Green Chem 11:1781–1786

    Article  CAS  Google Scholar 

  62. Yinghuai Z, Peng SC, Emi A, Zhenshun S, Monalisa Z, Kempd RA (2007) Adv Synth Catal 349:1917–1922

    Article  Google Scholar 

  63. Li R, Zhang P, Huang Y, Zhang P, Zhong H, Chen Q (2012) J Mater Chem 22:22750–22755

    Article  CAS  Google Scholar 

  64. Zhu M, Diao G (2011) J Phys Chem C 115:24743–24749

    Article  CAS  Google Scholar 

  65. Zhang L, Li P, Li H, Wang L (2012) Catal Sci Technol 2:1859–1864

    Article  CAS  Google Scholar 

  66. Du Q, Zhang W, Ma H, Zheng J, Zhou B, Li Y (2012) Tetrahedron 68:3577–3584

    Article  CAS  Google Scholar 

  67. Zhang Q, Su H, Luo J, Wei Y (2013) Catal Sci Technol 3:235–243

    Article  CAS  Google Scholar 

  68. Gao Z, Feng Y, Cui F, Hua Z, Zhou J, Zhu Y, Shi J (2011) J Mol Catal A 336:51–57

    Article  CAS  Google Scholar 

  69. Xuan S, Jiang W, Gonga X (2011) Dalton Trans 40:7827–7830

    Article  CAS  Google Scholar 

  70. Ko S, Jang Y (2006) Angew Chem Int Ed 45:7564–7567

    Article  CAS  Google Scholar 

  71. Hu J, Wang Y, Han M, Zhou Y, Jiang X, Sun P (2012) Catal Sci Technol 2:2332–2340

    Article  CAS  Google Scholar 

  72. Jang Y, Chung J, Kim S, Jun SW, Kim BH, Lee DW, Kim BM, Hyeon T (2011) Phys Chem Chem Phys 13:2512–2516

    Article  CAS  Google Scholar 

  73. Wan Y, Wang H, Zhao Q, Klingstedt M, Terasaki O, Zhao D (2009) J Am Chem Soc 131:4541–4550

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Spanish MINECO/FEDER (MAT2010-15374 and CTQ2010-16390) and by the Xunta de Galicia/FEDER (10PXIB314218PR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pablo Hervés or Jorge Pérez-Juste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taladriz-Blanco, P., Hervés, P. & Pérez-Juste, J. Supported Pd Nanoparticles for Carbon–Carbon Coupling Reactions. Top Catal 56, 1154–1170 (2013). https://doi.org/10.1007/s11244-013-0082-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0082-6

Keywords

Navigation