Skip to main content
Log in

Selective Hydrogenation of 4-Nitrobenzaldehyde to 4-Aminobenzaldehyde by Colloidal RhCu Bimetallic Nanoparticles

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Monodisperse RhCu bimetallic nanoparticles (NPs) with various compositions were prepared by the co-reduction of Rh and Cu ions in the presence of poly(N-vinyl-2-pyrrolidone) (PVP). Powder X-ray diffraction analysis of the PVP-stabilized RhCu NPs revealed the formation of a novel solid-solution structure in which the Rh and Cu atoms are randomly distributed. The catalytic properties of the colloidal RhCu NPs were studied using hydrogenation of 4-nitrobenzaldehyde as a test reaction. We found that the RhCu NPs efficiently reduced 4-nitrobenzaldehyde using atmospheric hydrogen at room temperature and that the selectivity to 4-aminobenzaldehyde was enhanced from ~70 % with monometallic Rh NPs to ~97 % with RhCu NPs with a Cu content of 50 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The absorbance of RhCu(50/50):PVP in the near IR region was reduced when a larger amount of PVP (100 equivalent) was used in the preparation (data not shown). Improvement of the dispersion of the NPs was also confirmed by the TEM observation. Nevertheless, we focused on the catalysis of RhCu(50/50):PVP prepared with 20 equivalent of PVP because RhCu(50/50) NPs prepared with 100 equivalent of PVP were partially oxidized in air probably due to smaller size (2.2 nm).

References

  1. Tafesh AM, Weiguny J (1996) Chem Rev 96:2035

    Article  CAS  Google Scholar 

  2. Downing RS, Kunkeler PJ, van Bekkum H (1997) Catal Today 37:121

    Article  CAS  Google Scholar 

  3. Wegener G, Brandt M, Duda L, Hofmann JR, Klesczewski B, Koch D, Kumpf R-J, Orzesek H, Pirkl H-G, Six C, Steinlein C, Weisbeck M (2001) Appl Catal A 221:303

    Article  CAS  Google Scholar 

  4. Corma A, Serna P (2006) Science 313:332

    Article  CAS  Google Scholar 

  5. Boronat M, Concepción P, Corma A, González S, Illas F, Serna P (2007) J Am Chem Soc 129:16230

    Article  CAS  Google Scholar 

  6. Corma A, Serna P, Concepción P, Calvino JJ (2008) J Am Chem Soc 130:8748

    Article  CAS  Google Scholar 

  7. Shimizu K-I, Miyamoto Y, Kawasaki T, Tanji T, Tai Y, Satsuma A (2009) J Phys Chem C 113:17803

    Article  CAS  Google Scholar 

  8. Shimizu K-I, Miyamoto Y, Satsuma A (2010) J Catal 270:86

    Article  CAS  Google Scholar 

  9. Makosch M, Lin W-I, Bumbálek VC, Sá J, Medlin JW, Hungerbúhler K, van Bokhoven JA (2012) ACS Catal 2:2079

    Article  CAS  Google Scholar 

  10. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374

    Article  CAS  Google Scholar 

  11. Tsunoyama H, Tsukuda T (2009) J Am Chem Soc 131:18216

    Article  CAS  Google Scholar 

  12. Narayanan R, El-Sayed MA (2005) J. Phys. Chem. B 109:12663

    Article  CAS  Google Scholar 

  13. Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Nano Lett 7:3097

    Article  CAS  Google Scholar 

  14. Sharif MJ, Maity P, Yamazoe S, Tsukuda T (2013) Chem Lett 42:1023

    Article  CAS  Google Scholar 

  15. Maity P, Yamazoe S, Tsukuda T (2013) ACS Catal 3:554

    Article  CAS  Google Scholar 

  16. Creighton JA, Eadon DG (1991) J Chem Soc Faraday Trans 87:3881

    Article  CAS  Google Scholar 

  17. Patterson AL (1939) Phys Rev 56:978

    Article  CAS  Google Scholar 

  18. Vegard L, Dale H (1928) Z Kristallogr 67:148

    CAS  Google Scholar 

  19. Zarkevich NA, Tan TL, Johnson DD (2007) Phys Rev B 75:104203

    Article  Google Scholar 

  20. Chakrabarti DJ, Laughlin DE (1982) Bull Alloy Phase Diagrams 2:461

    Google Scholar 

  21. Ouyang G, Tan X, Wang CX, Yang GW (2006) Nanotechnology 17:4257

    Article  CAS  Google Scholar 

  22. Nanda KK, Maisels A, Kruis FE, Fissan H, Stappert S (2003) Phys Rev Lett 91:106102

    Article  CAS  Google Scholar 

  23. Shirinyan AS, Gusak AM, Wautelet M (2005) Acta Mat 53:5025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Funding Program for Next Generation World-Leading Researchers (NEXT Program) (GR − 003), and part of this work was performed under the management of the “Elements Strategy Initiative for Catalysts & Batteries (ESICB),” supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Tsukuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, M.J., Yamazoe, S. & Tsukuda, T. Selective Hydrogenation of 4-Nitrobenzaldehyde to 4-Aminobenzaldehyde by Colloidal RhCu Bimetallic Nanoparticles. Top Catal 57, 1049–1053 (2014). https://doi.org/10.1007/s11244-014-0269-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0269-5

Keywords

Navigation