Skip to main content
Log in

Using operando Microspectroscopy to Uncover the Correlations Between the Electronic Properties of Dendrimer-Encapsulated Metallic Nanoparticles and their Catalytic Reactivity in π-Bond Activation Reactions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A main challenge in catalysis research is the development of novel catalytic systems, which combine the recyclability of heterogeneous catalysts and the high tunability of homogeneous catalysts. In this review paper we demonstrate that dendrimer encapsulated metallic nanoparticles combine these two advantages in one catalytic system and can be activated as catalysts toward reactions that are mainly activated by homogeneous catalysts. Following their encapsulation in a dendrimer matrix, the metallic nanoparticles were oxidized into metal ions. The encapsulated metal ions showed high reactivity toward a wide range of π-bond activation reactions. High and controllable products selectivity was obtained by adjusting the molecular properties of the dendrimer matrix. Kinetic studies have demonstrated the important role of the dendrimer matrix in stabilizing the catalytically-active species and preventing its leaching to the solution phase. Operando high spatiotemporal spectroscopy measurements, such as IR and XAS microspectroscopy, elucidated the properties of the active catalyst along the flow reactor and the mechanism of the catalytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691

    Article  CAS  Google Scholar 

  2. Corma A (2014) Introduction: chemicals from coal, alkynes, and biofuels. Chem Rev 114:1545–1546

    Article  CAS  Google Scholar 

  3. Greeley J, Norskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319–348

    Article  CAS  Google Scholar 

  4. Somorjai GA (2004) On the move. Nature 430:730–730

    Article  CAS  Google Scholar 

  5. Zaera F (2013) Nanostructured materials for applications in heterogeneous catalysis. Chem Soc Rev 42:2746–2762

    Article  CAS  Google Scholar 

  6. Backvall JE (2002) Catalytic chemistry and fine chemicals—preface. Top Catal 19:1–1

    Article  CAS  Google Scholar 

  7. Coperet C, Chabanas M, Saint-Arroman RP, Basset JM (2003) Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew Chem Int Edit 42:156–181

    Article  CAS  Google Scholar 

  8. Gorin DJ, Sherry BD, Toste FD (2008) Ligand effects in homogeneous Au catalysis. Chem Rev 108:3351–3378

    Article  CAS  Google Scholar 

  9. Gorin DJ, Toste FD (2007) Relativistic effects in homogeneous gold catalysis. Nature 446:395–403

    Article  CAS  Google Scholar 

  10. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Edit 44:7852–7872

    Article  CAS  Google Scholar 

  11. Gross E, Liu JHC, Toste FD, Somorjai GA (2012) Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time. Nat Chem 4:947–952

    Article  CAS  Google Scholar 

  12. Hemminger, J. From Quanta to the Continuum: Opportunites for Mesoscale Science2012

  13. Bonalumi N, Burgi T, Baiker A (2003) Interaction between ketopantolactone and chirally modified Pt investigated by attenuated total reflection IR concentration modulation spectroscopy. J Am Chem Soc 125:13342–13343

    Article  CAS  Google Scholar 

  14. Bonalumi N, Vargas A, Ferri D, Burgi T, Mallat T, Baiker A (2005) Competition at chiral metal surfaces: fundamental aspects of the inversion of enantioselectivity in hydrogenations on platinum. J Am Chem Soc 127:8467–8477

    Article  CAS  Google Scholar 

  15. Han DF, Li XH, Zhang HD, Liu ZM, Li J, Li C (2006) Heterogeneous asymmetric hydroformylation of olefins on chirally modified Rh/SiO2 catalysts. J Catal 243:318–328

    Article  CAS  Google Scholar 

  16. Kwon SG, Krylova G, Sumer A, Schwartz MM, Bunel EE, Marshall CL, Chattopadhyay S, Lee B, Jellinek J, Shevchenko EV (2012) Capping ligands as selectivity switchers in hydrogenation reactions. Nano Lett 12:5382–5388

    Article  CAS  Google Scholar 

  17. Kyriakou G, Beaumont SK, Lambert RM (2011) Aspects of heterogeneous enantioselective catalysis by metals. Langmuir 27:9687–9695

    Article  CAS  Google Scholar 

  18. Lehn JM (1990) Perspectives in supramolecular chemistry—from molecular recognition towards molecular information-processing and self-organization. Angewandte Chemie-International Edition in English 29:1304–1319

    Article  Google Scholar 

  19. Mallat T, Orglmeister E, Baiker A (2007) Asymmetric catalysis at chiral metal surfaces. Chem Rev 107:4863–4890

    Article  CAS  Google Scholar 

  20. Marshall ST, O’Brien M, Oetter B, Corpuz A, Richards RM, Schwartz DK, Medlin JW (2010) Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat Mater 9:853–858

    Article  CAS  Google Scholar 

  21. Marshall ST, Schwartz DK, Medlin JW (2011) Adsorption of oxygenates on alkanethiol-functionalized Pd(111) surfaces: mechanistic insights into the role of self-assembled monolayers on catalysis. Langmuir 27:6731–6737

    Article  CAS  Google Scholar 

  22. Meemken F, Hungerbuhler K, Baiker A (2014) Monitoring surface processes during heterogeneous asymmetric hydrogenation of ketones on a chirally modified platinum catalyst by operando spectroscopy. Angew Chem Int Edit 53:8640–8644

    Article  CAS  Google Scholar 

  23. Okrut A, Runnebaum RC, Ouyang X, Lu J, Aydin C, Hwang SJ, Zhang S, Olatunji-Ojo OA, Durkin KA, Dixon DA, Gates BC, Katz A (2014) Selective molecular recognition by nanoscale environments in a supported iridium cluster catalyst. Nat Nanotechnol 9:459–465

    Article  CAS  Google Scholar 

  24. Wu B, Huang H, Yang J, Zheng N, Fu G (2012) Selective hydrogenation of alpha, beta-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angew Chem 51:3440–3443

    Article  CAS  Google Scholar 

  25. Pang SH, Schoenbaum CA, Schwartz DK, Medlin JW (2014) Effects of thiol modifiers on the kinetics of furfural hydrogenation over Pd catalysts. Acs Catal 4:3123–3131

    Article  CAS  Google Scholar 

  26. Gross E, Somorjai GA (2015) Molecular catalysis science: nanoparticle synthesis and instrument development for studies under reaction conditions. J Catal 328:91–101

    Article  CAS  Google Scholar 

  27. Gross E, Toste FD, Somorjai GA (2015) Polymer-encapsulated metallic nanoparticles as a bridge between homogeneous and heterogeneous catalysis. Catal Lett 145:126–138

    Article  CAS  Google Scholar 

  28. Karakalos S, Zaera F (2015) Amplification of enantioselectivity on solid surfaces using nonchiral adsorbates. J Phys Chem C 119:13785–13790

    Article  CAS  Google Scholar 

  29. Weng ZH, Zaera F (2014) Increase in activity and selectivity in catalysis via surface modification with self-assembled monolayers. J Phys Chem C 118:3672–3679

    Article  CAS  Google Scholar 

  30. Schoenbaum CA, Schwartz DK, Medlin JW (2014) Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. Accounts Chem Res 47:1438–1445

    Article  CAS  Google Scholar 

  31. Yasukawa T, Miyamura H, Kobayashi S (2014) Chiral metal nanoparticle-catalyzed asymmetric C-C bond formation reactions. Chem Soc Rev 43:1450–1461

    Article  CAS  Google Scholar 

  32. Niu ZQ, Li YD (2014) Removal and utilization of capping agents in nanocatalysis. Chem Mater 26:72–83

    Article  CAS  Google Scholar 

  33. Gellman AJ, Tysoe WT, Zaera F (2015) Surface chemistry for enantioselective catalysis. Catal Lett 145:220–232

    Article  CAS  Google Scholar 

  34. Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959

    Article  CAS  Google Scholar 

  35. Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Accounts Chem Res 34:181–190

    Article  CAS  Google Scholar 

  36. Blaser HU, Jalett HP, Muller M, Studer M (1997) Enantioselective hydrogenation of alpha-ketoesters using cinchona modified platinum catalysts and related systems: a review. Catal Today 37:441–463

    Article  CAS  Google Scholar 

  37. Bonello JM, Lambert RM (2002) The structure and reactivity of quinoline overlayers and the adsorption geometry of lepidine on Pt{111}: model molecules for chiral modifiers in enantioselective hydrogenation. Surf Sci 498:212–228

    Article  CAS  Google Scholar 

  38. Bonello JM, Lindsay R, Santra AK, Lambert RM (2002) On the orientation of quinoline on Pd{111}: implications for heterogeneous enantioselective hydrogenation. J Phys Chem B 106:2672–2679

    Article  CAS  Google Scholar 

  39. Margitfalvi JL, Marti P, Baiker A, Botz L, Sticher O (1990) Role of the modifier in the enantioselective hydrogenation of ethyl pyruvate over Pt Al2o3 catalyst. Catal Lett 6:281–288

    Article  CAS  Google Scholar 

  40. Lavoie S, Laliberte MA, Temprano I, McBreen PH (2006) A generalized two-point H-bonding model for catalytic stereoselective hydrogenation of activated ketones on chirally modified platinum. J Am Chem Soc 128:7588–7593

    Article  CAS  Google Scholar 

  41. Kubota J, Zaera F (2001) Adsorption geometry of modifiers as key in imparting chirality to platinum catalysts. J Am Chem Soc 123:11115–11116

    Article  CAS  Google Scholar 

  42. Diezi S, Reimann S, Bonalumi N, Mallat T, Baiker A (2006) Steric and electronic effects in the enantioselective hydrogenation of activated ketones on platinum: directing effect of ester group. J Catal 239:255–262

    Article  CAS  Google Scholar 

  43. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  Google Scholar 

  44. Schoenbaum CA, Schwartz DK, Medlin JW (2013) Controlling surface crowding on a Pd catalyst with thiolate self-assembled monolayers. J Catal 303:92–99

    Article  CAS  Google Scholar 

  45. Crivillers N, Osella S, Van Dyck C, Lazzerini GM, Cornil D, Liscio A, Di Stasio F, Mian S, Fenwick O, Reinders F, Neuburger M, Treossi E, Mayor M, Palermo V, Cacialli F, Cornil J, Samori P (2013) Large work function shift of gold induced by a novel perfluorinated azobenzene-based self-assembled monolayer. Adv Mater 25:432–436

    Article  CAS  Google Scholar 

  46. Kahsar KR, Schwartz DK, Medlin JW (2015) Stability of self-assembled monolayer coated Pt/Al2O3 catalysts for liquid phase hydrogenation. J Mol Catal a-Chem 396:188–195

    Article  CAS  Google Scholar 

  47. Medlin JW (2011) Understanding and controlling reactivity of unsaturated oxygenates and polyols on metal catalysts. Acs Catal 1:1284–1297

    Article  CAS  Google Scholar 

  48. Pang SH, Medlin JW (2011) Adsorption and reaction of furfural and furfuryl alcohol on Pd(111): unique reaction pathways for multifunctional reagents. Acs Catal 1:1272–1283

    Article  CAS  Google Scholar 

  49. Pang SH, Medlin JW (2015) Controlling catalytic selectivity via adsorbate orientation on the surface: from furfural deoxygenation to reactions of epoxides. J Phys Chem Lett 6:1348–1356

    Article  CAS  Google Scholar 

  50. Pang, S. H.; Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W. Directing reaction pathways by catalyst active-site selection using self- assembled monolayers. Nat Commun 2013, 4

  51. Gade, L. H.; Astruc, D.: Dendrimer catalysis; Springer: Berlin; New York, 2006

  52. Zeng FW, Zimmerman SC (1997) Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem Rev 97:1681–1712

    Article  CAS  Google Scholar 

  53. Niu YH, Yeung LK, Crooks RM (2001) Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J Am Chem Soc 123:6840–6846

    Article  CAS  Google Scholar 

  54. Satoh N, Nakashima T, Kamikura K, Yamamoto K (2008) Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat Nanotechnol 3:106–111

    Article  CAS  Google Scholar 

  55. Yamamoto K, Imaoka T (2014) Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer. Accounts Chem Res 47:1127–1136

    Article  CAS  Google Scholar 

  56. Peng XH, Pan QM, Rempel GL (2008) Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem Soc Rev 37:1619–1628

    Article  Google Scholar 

  57. Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem Sci 2:1632–1646

    Article  CAS  Google Scholar 

  58. Scott RWJ, Ye HC, Henriquez RR, Crooks RM (2003) Synthesis, characterization, and stability of dendrimer-encapsulated palladium nanoparticles. Chem Mater 15:3873–3878

    Article  CAS  Google Scholar 

  59. Borodko Y, Thompson CM, Huang WY, Yildiz HB, Frei H, Somorjai GA (2011) Spectroscopic Study of Platinum and Rhodium dendrimer (PAMAM G4OH) compounds: structure and stability. J Phys Chem C 115:4757–4767

    Article  CAS  Google Scholar 

  60. Albiter MA, Crooks RM, Zaera F (2010) Adsorption of carbon monoxide on dendrimer-encapsulated platinum nanoparticles: liquid versus gas phase. J Phys Chem Lett 1:38–40

    Article  CAS  Google Scholar 

  61. Walter MV, Malkoch M (2012) Simplifying the synthesis of dendrimers: accelerated approaches. Chem Soc Rev 41:4593–4609

    Article  CAS  Google Scholar 

  62. Borodko Y, Ercius P, Pushkarev V, Thompson C, Somorjai G (2012) From single Pt atoms to Pt nanocrystals: photoreduction of Pt2+ inside of a PAMAM dendrimer. J Phys Chem Lett 3:236–241

    Article  CAS  Google Scholar 

  63. Borodko Y, Habas SE, Koebel M, Yang PD, Frei H, Somorjai GA (2006) Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J Phys Chem B 110:23052–23059

    Article  CAS  Google Scholar 

  64. Borodko Y, Humphrey SM, Tilley TD, Frei H, Somorjai GA (2007) Charge-transfer interaction of poly(vinylpyrrolidone) with platinum and rhodium nanoparticles. J Phys Chem C 111:6288–6295

    Article  CAS  Google Scholar 

  65. Borodko Y, Lee HS, Joo SH, Zhang YW, Somorjai G (2010) Spectroscopic study of the thermal degradation of PVP-Capped Rh and Pt nanoparticles in H-2 and O-2 environments. J Phys Chem C 114:1117–1126

    Article  CAS  Google Scholar 

  66. Huang, W. Y.; Kuhn, J. N.; Tsung, C. K.; Zhang, Y. W.; Somorjai, G. A. Dendrimer encapsulated one nanometer Rh and Pt particles: Characterization and hydrogenation studies of ethylene and pyrrole. Abstr Pap Am Chem S 2009, 237

  67. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J Phys Chem B 109:2192–2202

    Article  CAS  Google Scholar 

  68. Borodko Y, Ager JW, Marti GE, Song H, Niesz K, Somorjai GA (2005) Structure sensitivity of vibrational spectra of mesoporous silica SBA-15 and Pt/SBA-15. J Phys Chem B 109:17386–17390

    Article  CAS  Google Scholar 

  69. Witham CA, Huang WY, Tsung CK, Kuhn JN, Somorjai GA, Toste FD (2010) Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat Chem 2:36–41

    Article  CAS  Google Scholar 

  70. Li YM, Liu JHC, Witham CA, Huang WY, Marcus MA, Fakra SC, Alayoglu P, Zhu ZW, Thompson CM, Arjun A, Lee K, Gross E, Toste FD, Somorjai GA (2011) A Pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: X-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching. J Am Chem Soc 133:13527–13533

    Article  CAS  Google Scholar 

  71. Huang WY, Liu JHC, Alayoglu P, Li YM, Witham CA, Tsung CK, Toste FD, Somorjai GA (2010) Highly active heterogeneous palladium nanoparticle catalysts for homogeneous electrophilic reactions in solution and the utilization of a continuous flow reactor. J Am Chem Soc 132:16771–16773

    Article  CAS  Google Scholar 

  72. Gross E, Liu JH, Alayoglu S, Marcus MA, Fakra SC, Toste FD, Somorjai GA (2013) Asymmetric catalysis at the mesoscale: gold nanoclusters embedded in chiral self-assembled monolayer as heterogeneous catalyst for asymmetric reactions. J Am Chem Soc 135:3881–3886

    Article  CAS  Google Scholar 

  73. Zhang SR, Nguyen L, Zhu Y, Zhan SH, Tsung CK, Tao F (2013) In-Situ studies of nanocatalysis. Accounts Chem Res 46:1731–1739

    Article  CAS  Google Scholar 

  74. Frenkel AI (2012) Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev 41:8163–8178

    Article  CAS  Google Scholar 

  75. Borodko Y, Jones L, Lee H, Frei H, Somorjai G (2009) Spectroscopic study of Tetradecyltrimethylammonium Bromide Pt-C(14)TAB nanoparticles: structure and stability. Langmuir 25:6665–6671

    Article  CAS  Google Scholar 

  76. Ricciardi R, Huskens J, Verboom W (2015) Nanocatalysis in flow. Chemsuschem 8:2586–2605

    Article  CAS  Google Scholar 

  77. Nagaki A, Matsuo C, Kim S, Saito K, Miyazaki A, Yoshida J (2012) Lithiation of 1,2-Dichloroethene in flow microreactors: versatile synthesis of alkenes and alkynes by precise residence-time control. Angew Chem Int Edit 51:3245–3248

    Article  CAS  Google Scholar 

  78. Gross E, Shu XZ, Alayoglu S, Bechtel HA, Martin MC, Toste FD, Somorjai GA (2014) In situ IR and X-ray high spatial-resolution microspectroscopy measurements of multistep organic transformation in flow microreactor catalyzed by Au nanoclusters. J Am Chem Soc 136:3624–3629

    Article  CAS  Google Scholar 

  79. Sherry BD, Maus L, Laforteza BN, Toste FD (2006) Gold(I)-catalyzed synthesis of dihydropyrans. J Am Chem Soc 128:8132–8133

    Article  CAS  Google Scholar 

  80. Hartman RL, McMullen JP, Jensen KF (2011) Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew Chem Int Edit 50:7502–7519

    Article  CAS  Google Scholar 

  81. Newman SG, Jensen KF (2013) The role of flow in green chemistry and engineering. Green Chem 15:1456–1472

    Article  CAS  Google Scholar 

  82. Grunwaldt JD, Hannemann S, Schroer CG, Baiker A (2006) 2D-mapping of the catalyst structure inside a catalytic microreactor at work: partial oxidation of methane over Rh/Al2O3. J Phys Chem B 110:8674–8680

    Article  CAS  Google Scholar 

  83. Weckhuysen BM (2009) Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew Chem Int Edit 48:4910–4943

    Article  CAS  Google Scholar 

  84. Weckhuysen BM (2010) Preface: recent advances in the in situ characterization of heterogeneous catalysts. Chem Soc Rev 39:4557–4559

    Article  CAS  Google Scholar 

  85. Beale AM, Jacques SDM, Weckhuysen BM (2010) Chemical imaging of catalytic solids with synchrotron radiation. Chem Soc Rev 39:4656–4672

    Article  CAS  Google Scholar 

  86. Stavitski E, Kox MHF, Swart I, de Groot FMF, Weckhuysen BM (2008) In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals. Angew Chem Int Edit 47:3543–3547

    Article  CAS  Google Scholar 

  87. Nasse MJ, Walsh MJ, Mattson EC, Reininger R, Kajdacsy-Balla A, Macias V, Bhargava R, Hirschmugl CJ (2011) High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat Methods 8:413–416

    Article  CAS  Google Scholar 

  88. Levenson E, Lerch P, Martin MC (2008) Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared. J Synchrotron Radiat 15:323–328

    Article  CAS  Google Scholar 

  89. Gross E (2016) Uncovering the deactivation mechanism of Au catalyst with operando high spatial resolution IR and X-ray microspectroscopy measurements. Surf Sci 648:136–140

    Article  CAS  Google Scholar 

  90. Jiang Y, Yin PD, Li YY, Sun ZH, Liu QH, Yao T, Cheng H, Hu FC, Xie Z, He B, Pan GQ, Wei SQ (2012) Modifying the atomic and electronic structures of gold nanocrystals via changing the chain length of n-alkanethiol ligands. J Phys Chem C 116:24999–25003

    Article  CAS  Google Scholar 

  91. Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) Effect of electronic structures of Au clusters stabilized by Poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J Am Chem Soc 131:7086–7093

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elad Gross.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levartovsky, Y., Gross, E. Using operando Microspectroscopy to Uncover the Correlations Between the Electronic Properties of Dendrimer-Encapsulated Metallic Nanoparticles and their Catalytic Reactivity in π-Bond Activation Reactions. Top Catal 59, 1700–1711 (2016). https://doi.org/10.1007/s11244-016-0689-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0689-5

Keywords

Navigation