Skip to main content
Log in

Preparation of Dumbbell-like Er/ZnO Microrods with Efficient Energy Upconversion for the Catalytic Degradation of Tartaric Acid in Water

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Photon upconversion element, Er, doped in bulk and nanostructured ZnO materials synthesized using a traditional hydrothermal method has been conducted in this study to promote efficient energy upconversion for better photocatalytic degradation of tartaric acids in water under the irradiation of visible light. The FE-SEM images clearly reveal that the Er/ZnO crystallites self-organized into dumbbell-like microrods with moderate addition of PVP as a dispersant agent. The photocatalytic activity was investigated by photodegradation of water containing an aqueous tartaric acid solution under visible light irradiation for 6.5 h. Among the prepared photocatalysts, the first-order rate constant reaches the maximum of 2.5 × 10−3 min−1 with Er/ZnO-4 catalyst. Moreover, the Er ions provide a favorable redox potential, which resulted in the photoproduction of electronic defects and the inhibition of electron–hole recombination. The surface favored the generation of positive holes, which were considered to be the active centers of the reaction. Thus, the generation of holes leads to an effective removal of the tartaric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zamiri R, Kaushal A, Rebelo A, Ferreira J-M-F (2014) Ceram Int 40:1635–1639

    Article  CAS  Google Scholar 

  2. Yang J, Li X, Lang J, Yang L, Gao M, Liu X, Wei M, Liu Y, Wang R (2011) J Alloys Compd 509:10025–10031

    Article  CAS  Google Scholar 

  3. Amutha R, Muruganandham M, Lee G-J, Batalova V-N, Mokrousov G, Wu J-J (2010) Adv Sci Lett 3:491–495

    Article  CAS  Google Scholar 

  4. Li Z, Wang J, Hou Y, Bai X, Song H, Zhou Q, Wei T, Li Y, Liu B (2015) RSC Adv 5:3130–3134

    Article  CAS  Google Scholar 

  5. Zhou J, Liu Q, Feng W, Sun Y, Lid F (2015) Chem Rev 115:395–465

    Article  CAS  Google Scholar 

  6. Stehr J-E, Chen S-L, Reddy N-K, Tu C-W, Chen W-M, Buyanova I-A (2014) Adv Funct Mater 24:3760–3764

    Article  CAS  Google Scholar 

  7. Wang X, Kong X, Yu Y, Sun Y, Zhang H (2007) J Phys Chem C 111:15119–15124

    Article  CAS  Google Scholar 

  8. Koczkur K-M, Mourdikoudis S, Polavarapu L, Skrabalak S-E (2015) Dalton Trans 44:17883–17905

    Article  CAS  Google Scholar 

  9. Wang D, Song C (2005) J Phys Chem B 109:12697–12700

    Article  CAS  Google Scholar 

  10. Chen P-K, Lee G-J, Anandan S, Wu J-J (2012) Mater Sci Eng B 177:190–196

    Article  CAS  Google Scholar 

  11. Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014) Sci Rep 4:1–8

    Google Scholar 

  12. Raza W, Faisal S-M, Owais M, Bahnemanncd D, Muneer M (2016) RSC Adv 6:78335–78350

    Article  CAS  Google Scholar 

  13. Ahmed M-H, Byrne J-A, McLaughlin J, Ahmed W (2013) J Biomater Nanobiotechnol 4:194–203

    Article  Google Scholar 

  14. Ismail R-A, Habubi N-F, Hadi E-H (2016) WSN 33:67–78

    Google Scholar 

  15. Yang C-K, Naveenraj S, Lee G-J, Wu J-J (2015) Top Catal 58:1100–1111

    Article  CAS  Google Scholar 

  16. Das R, Phadke P, Khichar N, Chawla S (2014) J Mater Chem C 2:8880–8885

    Article  CAS  Google Scholar 

  17. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  18. Yu K-S, Shi J-Y, Zhang Z-L, Liang Y-M, Liu W (2013) J Nanomater 2013:1–5

    Google Scholar 

  19. Divya N-K, Pradyumnan P-P (2016) Mater Sci Semicond Process 41:428–435

    Article  CAS  Google Scholar 

  20. Liu X, Chu H, Li J, Niu L, Li C, Li H, Pan L, Sun C-Q (2015) Catal Sci Technol 5:4727–4740

    Article  CAS  Google Scholar 

  21. Cheng C-T, Chan M-N, Wilson K-R (2016) J Phys Chem A 120:5887–5896

    Article  CAS  Google Scholar 

  22. Singh A-K, Singh A-K, Singh V, Ashish, Singh S-P, Singh B (2013) TOCATJ 6:8–16

    Article  CAS  Google Scholar 

  23. Wetchakun N, Incessungvorn B, Wetchakun K, Phanichphant S (2013) Mater Res Bull 48:1668–1674

    Article  CAS  Google Scholar 

  24. Wang F, Liu X (2009) Chem Soc Rev 38:976–989

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank for the financial support by the Ministry of Science and Technology (MOST) in Taiwan under the Contract Number of MOST-104-2221-E-035-004-MY3. The support in providing the fabrication and measurement facilities from the Precision Instrument Support Center of Feng Chia University is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry J. Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, GJ., Lin, CY. & Wu, J.J. Preparation of Dumbbell-like Er/ZnO Microrods with Efficient Energy Upconversion for the Catalytic Degradation of Tartaric Acid in Water. Top Catal 60, 1359–1369 (2017). https://doi.org/10.1007/s11244-017-0820-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0820-2

Keywords

Navigation