Skip to main content

Advertisement

Log in

Fabrication of Fibrous Silica Zinc (FSZn) Composite for Enhanced Photocatalytic Desulphurization

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Novel fibrous silica zinc (FSZnIS) catalyst was synthesized by in-situ hydrothermal-microwave method and the catalyst was analyzed by X-ray Diffraction (XRD), N2 physisorption, Field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR), UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS) and photoluminescence (PL). The catalyst was employed in photocatalytic desulphurization of dibenzothiophene (DBT) in model fuel. The performance of FSZnIS was compared with bare fibrous silica (KCC-1), commercial ZnO and fibrous silica zinc prepared by impregnation method (FSZnIP). The photoactivity towards catalytic desulphurization of DBT is in the following order: FSZnIS (88.9%) > FSZnIP (62.4%) > KCC-1 (53.9%) > ZnO (44.4%). The best performance was achieved using 0.375 gL−1 of FSZnIS catalyst over 100 mgL−1 DBT in model fuel. This is predominantly due to the well distribution of ZnO on KCC-1, high surface area (411.2 m2 g−1), high number of Si–O–Zn bonds, appropriate band gap energy (2.95 eV), and proficient charge separation. These criteria mutually encouraged effective harvesting of visible light (420 nm) and good mobility of charge carriers for enhanced visible light driven performance. A kinetics study determined by Langmuir–Hinshelwood model demonstrated that the photodesulphurization obeyed the pseudo-first-order and adsorption was the rate-limiting step.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xiong J, Luo J, Di J et al (2020) Macroscopic 3D boron nitride monolith for efficient adsorptive desulfurization. Fuel 261:116448. https://doi.org/10.1016/j.fuel.2019.116448

    Article  CAS  Google Scholar 

  2. Lu X, Li X, Chen F et al (2020) Biotemplating synthesis of N-doped two-dimensional CeO2–TiO2 nanosheets with enhanced visible light photocatalytic desulfurization performance. J Alloys Compd 815:152326. https://doi.org/10.1016/j.jallcom.2019.152326

    Article  CAS  Google Scholar 

  3. Botana A, Cruz D, Boahene P et al (2020) Adsorptive desulfurization through charge-transfer complex using mesoporous adsorbents. Fuel 269:117379. https://doi.org/10.1016/j.fuel.2020.117379

    Article  CAS  Google Scholar 

  4. Hayyan M, Alakrach AM, Hayyan A et al (2017) Superoxide ion as oxidative desulfurizing agent for aromatic sulfur compounds in ionic liquid media. ACS Sustain Chem Eng 5:1854–1863. https://doi.org/10.1021/acssuschemeng.6b02573

    Article  CAS  Google Scholar 

  5. Abdi G, Ashokkumar M, Alizadeh A (2017) Ultrasound-assisted oxidative-adsorptive desulfurization using highly acidic graphene oxide as a catalyst-adsorbent. Fuel 210:639–645. https://doi.org/10.1016/j.fuel.2017.09.024

    Article  CAS  Google Scholar 

  6. Hitam CNC, Jalil AA, Abdulrasheed AA (2019) A review on recent progression of photocatalytic desulphurization study over decorated photocatalysts. J Ind Eng Chem 74:172–186. https://doi.org/10.1016/j.jiec.2019.02.024

    Article  CAS  Google Scholar 

  7. Kang M, Wang X, Zhang J et al (2019) Boosting the photocatalytic oxidative desulfurization of dibenzothiophene by decoration of MWO4 (M=Cu, Zn, Ni) on WO3. J Environ Chem Eng 7:102809. https://doi.org/10.1016/j.jece.2018.11.053

    Article  CAS  Google Scholar 

  8. Álvarez JCD, Galván MM, Rojas LL et al (2019) Synthesis and characterization of the all solid Z-scheme-Bi2WO6/Ag/AgBr for the photocatalytic degradation of ciprofloxacin in water. Top Catal. https://doi.org/10.1007/s11244-019-01190-1

    Article  Google Scholar 

  9. Miao G, Huang D, Ren X et al (2016) Visible-light induced photocatalytic oxidative desulfurization using BiVO4/C3N4@SiO2 with air/cumene hydroperoxide under ambient conditions. Appl Catal B 192:72–79. https://doi.org/10.1016/j.apcatb.2016.03.033

    Article  CAS  Google Scholar 

  10. Kozlova EA, Lyulyukin MN, Markovskaya DV et al (2020) Photocatalytic­CO2 reduction over Ni-modified­Cd1−xZnxS-Sbased photocatalysts : effect of phase composition of photocatalyst and reaction media on reduction rate and product distribution. Top Catal. https://doi.org/10.1007/s11244-020-01233-y

    Article  Google Scholar 

  11. Rempel AA, Dorosheva YVKIB, Valeeva AA et al (2020) High photocatalytic activity under visible light of sandwich structures based on anodic­TiO2/CdS nanoparticles/Sol–Gel­TiO2. Top Catal. https://doi.org/10.1007/s11244-020-01226-x

    Article  Google Scholar 

  12. Lin F, Jiang Z, Tang N et al (2016) Photocatalytic oxidation of thiophene on RuO2/SO42–TiO2: Insights for cocatalyst and solid-acid. Appl Catal B Environ 188:253–258. https://doi.org/10.1016/j.apcatb.2016.02.016

    Article  CAS  Google Scholar 

  13. Lu X, Li X, Qian J et al (2016) Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. J Alloys Compd 661:363–371. https://doi.org/10.1016/j.jallcom.2015.11.148

    Article  CAS  Google Scholar 

  14. Mandizadeh S, Salavati-Niasari M, Sadri M (2017) Hydrothermal synthesis, characterization and magnetic properties of BaFe2O4 nanostructure as a photocatalytic oxidative desulfurization of dibenzothiophene. Sep Purif Technol 175:399–405. https://doi.org/10.1016/j.seppur.2016.11.071

    Article  CAS  Google Scholar 

  15. Li X, Yang X, Zhou F et al (2019) Construction of novel amphiphilic [Bmin]3PMo12O40/g-C3N4 heterojunction catalyst with outstanding photocatalytic oxidative desulfurization performance under visible light. J Taiwan Inst Chem Eng 100:210–219. https://doi.org/10.1016/j.jtice.2019.04.024

    Article  CAS  Google Scholar 

  16. Jusoh NWC, Jalil AA, Triwahyono S et al (2015) Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration. Appl Surf Sci 330:10–19. https://doi.org/10.1016/j.apsusc.2014.12.192

    Article  CAS  Google Scholar 

  17. Fatah NAA, Triwahyono S, Jalil AA et al (2017) n-Heptane isomerization over molybdenum supported on bicontinuous concentric lamellar silica KCC-1: Influence of phosphorus and optimization using response surface methodology (RSM). Chem Eng J 314:650–659. https://doi.org/10.1016/j.cej.2016.12.028

    Article  CAS  Google Scholar 

  18. Shahul Hamid MY, Triwahyono S, Jalil AA et al (2018) Tailoring the properties of metal oxide loaded/KCC-1 toward a different mechanism of CO2 methanation by in situ IR and ESR. Inorg Chem 57:5859–5869. https://doi.org/10.1021/acs.inorgchem.8b00241

    Article  CAS  Google Scholar 

  19. Singh R, Bapat R, Qin L et al (2016) Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect. ACS Catal 6:2770–2784. https://doi.org/10.1021/acscatal.6b00418

    Article  CAS  Google Scholar 

  20. Zhang M, Zhao M, Chen R et al (2020) Applied Surface Science Fabrication of the pod-like KCC-1/TiO2 superhydrophobic surface on AZ31 Mg alloy with stability and photocatalytic property. Appl Surf Sci 499:143933. https://doi.org/10.1016/j.apsusc.2019.143933

    Article  CAS  Google Scholar 

  21. Zhao H, Sun X, Xu D et al (2019) Fe-based N-doped dendritic catalysts for catalytic ammoxidation of aromatic aldehydes to aromatic nitriles. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2019.12.133

    Article  Google Scholar 

  22. Bayal N, Singh R, Polshettiwar V (2017) Nanostructured silica-titania hybrid using dendritic fibrous nanosilica as a photocatalyst. Chemsuschem 10:2182–2191. https://doi.org/10.1002/cssc.201700135

    Article  CAS  Google Scholar 

  23. Hussain I, Jalil AA, Mamat CR et al (2019) New insights on the e ff ect of the H2/CO ratio for enhancement of CO methanation over metal-free fi brous silica ZSM-5: Thermodynamic and mechanistic studies. Energy Convers Manag 199:112056. https://doi.org/10.1016/j.enconman.2019.112056

    Article  CAS  Google Scholar 

  24. Jalil AA, Gambo Y, Abdulrasheed AA, Asli UA (2019) Platinum-promoted fibrous silica Y zeolite with enhanced mass transfer as a highly selective catalyst for n-dodecane hydroisomerization. Int J Energy Res. https://doi.org/10.1002/er.4545

    Article  Google Scholar 

  25. Izan SM, Jalil AA, Hitam CK, Nabgan W (2019) Influence of nitrate and phosphate on silica fibrous beta zeolite framework for enhanced cyclic and noncyclic alkane isomerization. Inorg Chem. https://doi.org/10.1021/acs.inorgchem.9b02914

    Article  Google Scholar 

  26. Azami MS, Jalil AA, Hitam CNC et al (2020) Applied Surface Science Tuning of the electronic band structure of fi brous silica titania with g-C3N4 for efficient Z-scheme photocatalytic activity. Appl Surf Sci 512:145744. https://doi.org/10.1016/j.apsusc.2020.145744

    Article  CAS  Google Scholar 

  27. Abdulrasheed AA, Jalil AA, Hamid MYS et al (2020) Dry reforming of CH4 over stabilized Ni-La@KCC-1 catalyst : effects of La promoter and optimization studies using RSM. J CO2 Util 37:230–239

  28. Shahul Hamid MY, Abdul Jalil A, Abdul Rahman AF, Tuan Abdullah TA (2019) Enhanced reactive CO2 species formation: Via V2O5-promoted Ni/KCC-1 for low temperature activation of CO2 methanation. React Chem Eng 4:1126–1135. https://doi.org/10.1039/c8re00312b

    Article  CAS  Google Scholar 

  29. Fauzi AA, Jalil AA, Mohamed M et al (2018) Altering fiber density of cockscomb-like fibrous silica–titania catalysts for enhanced photodegradation of ibuprofen. J Environ Manag 227:34–43. https://doi.org/10.1016/j.jenvman.2018.08.073

    Article  CAS  Google Scholar 

  30. Hitam CNC, Jalil AA, Triwahyono S et al (2016) Synergistic interactions of Cu and N on surface altered amorphous TiO2 nanoparticles for enhanced photocatalytic oxidative desulfurization of dibenzothiophene. RSC Adv 6:76259–76268. https://doi.org/10.1039/c6ra06684d

    Article  CAS  Google Scholar 

  31. Cheng C, Nasuha S, Wang Y et al (2020) Microporous and Mesoporous Materials Facile synthesis of tunable dendritic fibrous SBA-15 (DFSBA-15) with radial wrinkle structure. Microporous Mesoporous Mater 294:109872. https://doi.org/10.1016/j.micromeso.2019.109872

    Article  CAS  Google Scholar 

  32. Jusoh NWC, Jalil AA, Triwahyono S et al (2013) Sequential desilication-isomorphous substitution route to prepare mesostructured silica nanoparticles loaded with ZnO and their photocatalytic activity. Appl Catal A 468:276–287. https://doi.org/10.1016/j.apcata.2013.09.005

    Article  CAS  Google Scholar 

  33. Damonte LC, Darriba GN, Rentería M (2018) Structural and electronic properties of Al-doped ZnO semiconductor nanopowders : interplay between XRD and PALS experiments and first-principles/DFT modeling. J Alloys Compd 735:2471–2478. https://doi.org/10.1016/j.jallcom.2017.11.072

    Article  CAS  Google Scholar 

  34. Badmaev SD, Akhmetov NO, Sobyanin VA (2019) Partial oxidation of dimethoxymethane to syngas over supported noble metal catalysts. Top Catal. https://doi.org/10.1007/s11244-019-01207-9

    Article  Google Scholar 

  35. Hamid MYS, Firmansyah ML, Triwahyono S et al (2017) Oxygen vacancy-rich mesoporous silica KCC-1 for CO2 methanation. Appl Catal A 532:86–94. https://doi.org/10.1016/j.apcata.2016.12.023

    Article  CAS  Google Scholar 

  36. Hassan NS, Jalil AA, Khusnun NF et al (2019) Role of reduced graphene oxide in improving interfacial charge transfer of hybridized rGO/silica/zirconia for enhanced Bisphenol A photodegradation. J Alloys Compd 789:221–230. https://doi.org/10.1016/j.jallcom.2019.03.105

    Article  CAS  Google Scholar 

  37. Ghani NNM, Jalil AA, Triwahyono S et al (2019) Tailored mesoporosity and acidity of shape-selective fibrous silica beta zeolite for enhanced toluene co-reaction with methanol. Chem Eng Sci 193:217–229. https://doi.org/10.1016/j.ces.2018.09.009

    Article  CAS  Google Scholar 

  38. Abdulrasheed AA, Jalil AA, Hamid MYS et al (2019) Dry reforming of methane to hydrogen-rich syngas over robust fibrous KCC-1 stabilized nickel catalyst with high activity and coke resistance. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.04.126

    Article  Google Scholar 

  39. Polshettiwar V, Cha D, Zhang X, Basset JM (2010) High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angew Chem Int Ed 49:9652–9656. https://doi.org/10.1002/anie.201003451

    Article  CAS  Google Scholar 

  40. Aziz FFA, Jalil AA, Triwahyono S, Mohamed M (2018) Controllable structure of fibrous SiO2–ZSM-5 support decorated with TiO2 catalysts for enhanced photodegradation of paracetamol. Appl Surf Sci 455:84–95. https://doi.org/10.1016/j.apsusc.2018.05.183

    Article  CAS  Google Scholar 

  41. Aazam ES (2014) Visible light photocatalytic degradation of thiophene using Ag-TiO2/multi-walled carbon nanotubes nanocomposite. Ceram Int 40:6705–6711. https://doi.org/10.1016/j.ceramint.2013.11.132

    Article  CAS  Google Scholar 

  42. Li X, Li F, Lu X et al (2018) Microwave hydrothermal synthesis of BiP1−xVxO4/attapulgite nanocomposite with efficient photocatalytic performance for deep desulfurization. Powder Technol 327:467–475. https://doi.org/10.1016/j.powtec.2018.01.005

    Article  CAS  Google Scholar 

  43. Abdelaal MY, Mohamed RM (2014) Environmental remediation from thiophene solution by photocatalytic oxidation using a Pd/ZrO2-chitosan nanocomposite. Ceram Int 40:7693–7699. https://doi.org/10.1016/j.ceramint.2013.12.110

    Article  CAS  Google Scholar 

  44. Alshammari AS, Bagabas A, Alarifi N, Altamimi R (2019) Effect of the Nature of Metal Nanoparticles on the Photocatalytic Degradation of Rhodamine B. Top Catal. https://doi.org/10.1007/s11244-019-01180-3

    Article  Google Scholar 

Download references

Acknowledgments

This research study was sponsored by the Universiti Teknologi Malaysia through Professional Development Research University Grant (No. 04E33) and Collaborative Research Grant (Grant No. 07G62), and also by the Ministry of Higher Education Malaysia through Fundamental Research Grant No. FRGS/1/2019/STG07/ UTM/01/1 (Grant No. 5F192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Jalil.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hitam, C.N.C., Jalil, A.A. & Raji, Y.O. Fabrication of Fibrous Silica Zinc (FSZn) Composite for Enhanced Photocatalytic Desulphurization. Top Catal 63, 1169–1181 (2020). https://doi.org/10.1007/s11244-020-01275-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01275-2

Keywords

Navigation