Skip to main content
Log in

Thermal Grafting of Benzaldehyde for Preparing Catalytically Active Silicon Surface Evaluated by Electrical Methods

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalytically active C7H6O/p-Si/Al Schottky barrier surfaces were developed using the method of thermal grafting in a home-built reactor. The extendable organic molecule benzaldehyde with finite dipole moment was grafted by enthalpic cleavage of Si–H bond on p-Si (100) wafer. The current–voltage and capacitance–voltage characteristics were used to identify the optimal grafting of the molecule. The process temperature was varied from 353 to 403 K. The barrier height was found to tune from 0.36 to 0.52 eV with dopant density from 1085 × 1015 to 634 × 1015 cm−3. This change is attributed to reduction in surface inhomogeneity leading to rise in global potential barrier. Modified field emission theory was deployed effectively to extract the relevant parameters to evaluate the optimal grafting of aromatic aldehyde on the semiconductor surface.

Graphical Abstract

a ln(I)–V of Hg/C7H6O/p-Si/Al for Schottky barrier diode, and b 1/C2–voltage plot for Hg/C7H6O/p-Si/Al junction, for different grafting temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reed GT (2003) Silicon photonics: the state of the art (Wiley, 2008). Active Passive Elec Comp 26(2):63–70

    Article  Google Scholar 

  2. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, Hoboken

    Book  Google Scholar 

  3. Natarajan TS (2012) Functional nanofibers in microelectronics applications. Functional nanofibers and their applications. Woodhead Publishing, Sawston, pp 371–410

    Chapter  Google Scholar 

  4. Ji X, Zuppero A, Gidwani JM, Somorjai GA (2005) The catalytic nanodiode: gas phase catalytic reaction generated electron flow using nanoscale platinum titanium oxide Schottky diodes. Nano Lett 5(4):753–756. https://doi.org/10.1021/nl050241a

    Article  CAS  PubMed  Google Scholar 

  5. Singh M, Wu YR, Singh J (2003) Examination of LiNbO3/nitride heterostructures. Solid-State Electron 47(12):2155–2159. https://doi.org/10.1016/S0038-1101(03)00189-8

    Article  CAS  Google Scholar 

  6. Adimule V, Revaigh MG, Adarsha HJ (2020) Synthesis and fabrication of Y-Doped ZnO nanoparticles and their application as a gas sensor for the detection of ammonia. J Mater Eng Perform 29(7):4586–4596. https://doi.org/10.1007/s11665-020-04979-4

    Article  CAS  Google Scholar 

  7. Adimule V, Nandi SS, Yallur BC, Shaikh N (2021) CNT/graphene-assisted flexible thin-film preparation for stretchable electronics and superconductors. In: Pal K (ed) Sensors for stretchable electronics in nanotechnology. CRC Press, New York, pp 89–103

    Chapter  Google Scholar 

  8. Adimule V, Revaiah RG, Nandi SS, Jagadeesha AH (2021) Synthesis, characterization of Cr doped TeO2 nanostructures and its application as EGFET pH sensor. Electroanalysis 33(3):579–590. https://doi.org/10.1002/elan.202060329

    Article  CAS  Google Scholar 

  9. Sze SM, Li Y, Ng KK (2021) Physics of semiconductor devices. Wiley, Hoboken

    Google Scholar 

  10. Türüt A, Bati B, Kökçe A, Sağlam M, Yalçin N (1996) The bias-dependence change of barrier height of Schottky diodes under forward bias by including the series resistance effect. Phys Scr 53(1):118. https://doi.org/10.1088/0031-8949/53/1/023

    Article  Google Scholar 

  11. Sekhar Reddy PR, Janardhanam V, Rajagopal Reddy V, Park MH, Choi CJ (2021) Effects of rapid thermal annealing on the structural, optical, and electrical properties of Au/CuPc/n-Si (MPS)-type Schottky barrier diodes. Appl Phys A 127(10):1–12. https://doi.org/10.1007/s00339-021-04945-4

    Article  CAS  Google Scholar 

  12. Adimule V, Yallur BC, Bhowmik D, Gowda AHJ (2021) Morphology, structural and photoluminescence properties of shaping triple semiconductor Y x CoO: ZrO 2 nanostructures. J Mater Sci 32(9):12164–12181. https://doi.org/10.1007/s10854-021-05845-2

    Article  CAS  Google Scholar 

  13. Mitra KY, Sternkiker C, Martínez-Domingo C, Sowade E, Ramon E, Carrabina J et al (2017) Inkjet printed metal insulator semiconductor (MIS) diodes for organic and flexible electronic application. Flexible Printed Electron 2(1):015003. https://doi.org/10.1088/2058-8585/2/1/015003

    Article  CAS  Google Scholar 

  14. Tung RT, Kronik L (2021) Quantitative explanation of the Schottky barrier height. Phys Rev B 103(3):035304. https://doi.org/10.1103/PhysRevB.103.035304

    Article  CAS  Google Scholar 

  15. Pluchery O, Zhang Y, Benbalagh R, Caillard L, Gallet JJ, Bournel F et al (2016) Static and dynamic electronic characterization of organic monolayers grafted on a silicon surface. Phys Chem Chem Phys 18(5):3675–3684. https://doi.org/10.1039/C5CP05943G

    Article  CAS  PubMed  Google Scholar 

  16. Vilan A, Yaffe O, Biller A, Salomon A, Kahn A, Cahen D (2010) Molecules on Si: electronics with chemistry. Adv Mater 22(2):140–159. https://doi.org/10.1002/adma.200901834

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Wang Z, Li J, Li L, Hu W (2020) Surface-grafting polymers: from chemistry to organic electronics. Mater Chem Front 4(3):692–714. https://doi.org/10.1039/C9QM00450E

    Article  CAS  Google Scholar 

  18. Vilan A, Cahen D (2017) Chemical modification of semiconductor surfaces for molecular electronics. Chem Rev 117(5):4624–4666. https://doi.org/10.1021/acs.chemrev.6b00746

    Article  CAS  PubMed  Google Scholar 

  19. Adimule V, Yallur BC, Kamat V, Krishna PM (2021) Characterization studies of novel series of cobalt (II), nickel (II) and copper (II) complexes: DNA binding and antibacterial activity. J Pharm Investig 51(3):347–359. https://doi.org/10.1007/s40005-021-00524-0

    Article  CAS  Google Scholar 

  20. Tietze ML, Benduhn J, Pahner P, Nell B, Schwarze M, Kleemann H et al (2018) Elementary steps in electrical doping of organic semiconductors. Nat Commun 9(1):1–9. https://doi.org/10.1038/s41467-018-03302-z

    Article  CAS  Google Scholar 

  21. Adimule V, Nandi SS, Adarsha HJ (2021) A facile synthesis of Cr doped WO3 nanostructures, study of their current-voltage, power dissipation and impedance properties of thin films. J Nano Res 67:33–42. https://doi.org/10.4028/www.scientific.net/JNanoR.67.33

    Article  CAS  Google Scholar 

  22. Adimule V, Nandi SS, Gowda AHJ (2021) Enhanced power conversion efficiency of the P3BT (Poly-3-Butyl Thiophene) doped nanocomposites of Gd-TiO 3 as working electrode. In: Pawar PM, Balasubramaniam R, Ronge BP, Salunkhe SB, Vibhute AS, Melinamath B (eds) Techno-societal 2020. Springer, Cham, pp 55–68

    Chapter  Google Scholar 

  23. Cho K, Pak J, Chung S, Lee T (2019) Recent advances in interface engineering of transition-metal dichalcogenides with organic molecules and polymers. ACS Nano 13(9):9713–9734. https://doi.org/10.1021/acsnano.9b02540

    Article  CAS  PubMed  Google Scholar 

  24. Adimule V, Nandi SS, Yallur BC, Bhowmik D, Jagadeesha AH (2021) Optical, structural and photoluminescence properties of Gd x SrO: CdO nanostructures synthesized by Co precipitation method. J Fluoresc 31(2):487–499. https://doi.org/10.1007/s10895-021-02683-7

    Article  CAS  PubMed  Google Scholar 

  25. Adimule V, Yallur BC, Bhowmik D, Gowda AH (2021) Dielectric properties of P3BT doped ZrY2O3/CoZrY2O3 nanostructures for low cost optoelectronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-021-00348-7

    Article  Google Scholar 

  26. Mönch W (2013) Semiconductor surfaces and interfaces, vol 26. Springer Science & Business Media, Berlin

    Google Scholar 

  27. Cordier S, Fabre B, Molard Y, Fadjie-Djomkam AB, Tournerie N, Ledneva A et al (2010) Covalent anchoring of Re6Sei8 cluster cores monolayers on modified n-and p-type Si (111) surfaces: effect of coverage on electronic properties. J Phys Chem C 114(43):18622–18633. https://doi.org/10.1021/jp1071007

    Article  CAS  Google Scholar 

  28. Adimule VM, Bowmik D, Adarsha HJ (2020) A facile synthesis of Cr doped WO3 nanocomposites and its effect in enhanced current-voltage and impedance characteristics of thin films. Lett Mater 10(4):481–485. https://doi.org/10.22226/2410-3535-2020-4-481-485

    Article  Google Scholar 

  29. Lloyd Spetz A, Baranzahi A, Tobias P, Lundström I (1997) High temperature sensors based on metal–insulator–silicon carbide devices. Physica Status Solidi (a) 162(1):493–511. https://doi.org/10.1002/1521-396X(199707)162

    Article  CAS  Google Scholar 

  30. Aureau D, Varin Y, Roodenko K, Seitz O, Pluchery O, Chabal YJ (2010) Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces. J Phys Chem C 114(33):14180–14186. https://doi.org/10.1021/jp104183m

    Article  CAS  Google Scholar 

  31. Kang J, Huang S, Jiang K, Lu C, Chen Z, Zhu J et al (2020) 2D porous polymers with sp2-carbon connections and sole sp2-carbon skeletons. Adv Func Mater 30(27):2000857. https://doi.org/10.1002/adfm.202000857

    Article  CAS  Google Scholar 

  32. Yakuphanoglu F, Basaran E, Şenkal BF, Sezer E (2006) Electrical and optical properties of an organic semiconductor based on polyaniline prepared by emulsion polymerization and fabrication of Ag/polyaniline/n-Si Schottky diode. J Phys Chem B 110(34):16908–16913. https://doi.org/10.1021/jp060445v

    Article  CAS  PubMed  Google Scholar 

  33. Hunger R, Jaegermann W, Merson A, Shapira Y, Pettenkofer C, Rappich J (2006) Electronic structure of methoxy-, bromo-, and nitrobenzene grafted onto Si (111). J Phys Chem B 110(31):15432–15441. https://doi.org/10.1021/jp055702v

    Article  CAS  PubMed  Google Scholar 

  34. Scott A, Risko C, Valley N, Ratner MA, Janes DB (2010) Molecular modulation of Schottky barrier height in metal-molecule-silicon diodes: capacitance and simulation results. J Appl Phys 107(2):024505. https://doi.org/10.1063/1.3251466

    Article  CAS  Google Scholar 

  35. Garcia MCT, Utsunomiya T, Ichii T, Sugimura H (2021) Kelvin probe force microscopy studies on the influence of hydrocarbon chain length on 1-alkene self-assembled monolayers on Si (111). Jpn J Appl Phys 60(SE):SE1005. https://doi.org/10.35848/1347-4065/abf4a2

    Article  CAS  Google Scholar 

  36. Ren F, Pearton SJ (2013) Recent advances in wide bandgap semiconductor-based gas sensors. Semiconduct Gas Sensors. https://doi.org/10.1533/9780857098665.2.159

    Article  Google Scholar 

  37. Li T, Bandari VK, Hantusch M, Xin J, Kuhrt R, Ravishankar R et al (2020) Integrated molecular diode as 10 MHz half-wave rectifier based on an organic nanostructure heterojunction. Nat Commun 11(1):1–10. https://doi.org/10.1038/s41467-020-17352-9

    Article  CAS  Google Scholar 

  38. Vilan A, Cahen D (2002) How organic molecules can control electronic devices. Trends Biotechnol 20(1):22–29. https://doi.org/10.1016/S0167-7799(01)01839-X

    Article  CAS  PubMed  Google Scholar 

  39. Saito N, Hayashi K, Sugimura H, Takai O (2003) Microstructured π-conjugated organic monolayer covalently attached to silicon. Langmuir 19(26):10632–10634. https://doi.org/10.1021/la034187u

    Article  CAS  Google Scholar 

  40. Uzun İ, Aksoy Ö, Topal G, Çelik Ö, Ocak YS (2020) Evaluation of synthesized new chitin derivatives in Schottky diode constructions. Polym Plastics Technol Mater 59(11):1218–1232. https://doi.org/10.1080/25740881.2020.1725568

    Article  CAS  Google Scholar 

  41. Bearda T, Mertens PW, Beaudoin SP (2018) Overview of wafer contamination and defectivity. Handbook of silicon wafer cleaning technology. William Andrew Publishing, Norwich, pp 87–149

    Chapter  Google Scholar 

  42. Møller MS, Liljedahl MC, McKee V, McKenzie CJ (2021) Solid phase nitrosylation of enantiomeric cobalt (II) complexes. Chemistry 3(2):585–597. https://doi.org/10.3390/chemistry3020041

    Article  CAS  Google Scholar 

  43. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283. https://doi.org/10.1016/0009-2614(74)85031-1

    Article  CAS  Google Scholar 

  44. Joachim C, Gimzewski JK, Aviram AA (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408(6812):541–548. https://doi.org/10.1038/35046000

    Article  CAS  PubMed  Google Scholar 

  45. Mei B, Seger B, Pedersen T, Malizia M, Hansen O, Chorkendorff I, Vesborg PC (2014) Protection of p+-n-Si photoanodes by sputter-deposited Ir/IrO x thin films. J Phys Chem Lett 5(11):1948–1952. https://doi.org/10.1021/jz500865g

    Article  CAS  PubMed  Google Scholar 

  46. Schroder DK (2015) Semiconductor material and device characterization. Wiley, Hoboken

    Google Scholar 

  47. Kim NY, Laibinis PE (1997) Thermal derivatization of porous silicon with alcohols. J Am Chem Soc 119(9):2297–2298. https://doi.org/10.1021/ja963540y

    Article  CAS  Google Scholar 

  48. Bolotov L, Fons P, Mimura H, Sasaki T, Uchida N (2021) Electronic modification of wet-prepared Si surfaces by a dichlorosilane reaction at elevated temperature. Appl Surf Sci 570:151135. https://doi.org/10.1016/j.apsusc.2021.151135

    Article  CAS  Google Scholar 

  49. Iwane M, Fujii S, Kiguchi M (2017) Molecular diode studies based on a highly sensitive molecular measurement technique. Sensors 17(5):956. https://doi.org/10.3390/s17050956

    Article  CAS  PubMed Central  Google Scholar 

  50. Maeda K (2002) Identity of defect causing nonideality in nearly ideal Au/n-Si Schottky barriers. Appl Surf Sci 190(1–4):445–449. https://doi.org/10.1016/S0169-4332(01)00913-8

    Article  CAS  Google Scholar 

  51. Sze SM, Ng KK (1981) Physics of semiconductor devices. Wiley, New York, p 68

    Google Scholar 

  52. Bohlin KE (1986) Generalized Norde plot including determination of the ideality factor. J Appl Phys 60(3):1223–1224. https://doi.org/10.1063/1.337372

    Article  Google Scholar 

  53. Schmitsdorf RF, Kampen TU, Mönch W (1997) Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers. J Vacuum Sci Technol B 15(4):1221–1226. https://doi.org/10.1116/1.589442

    Article  CAS  Google Scholar 

  54. Boyarbay B, Çetin H, Kaya MALİK, Ayyildiz E (2008) Correlation between barrier heights and ideality factors of H-terminated Sn/p-Si (1 0 0) Schottky barrier diodes. Microelectron Eng 85(4):721–726. https://doi.org/10.1016/j.mee.2008.01.005

    Article  CAS  Google Scholar 

  55. Tung RT, Levi AFJ, Sullivan JP, Schrey F (1991) Schottky-barrier inhomogeneity at epitaxial NiSi 2 interfaces on Si (100). Physical Rev Lett 66(1):72. https://doi.org/10.1103/physrevlett.66.72

    Article  CAS  Google Scholar 

  56. Chand S, Kumar J (1996) On the existence of a distribution of barrier heights in Pd2Si/Si Schottky diodes. J Appl Phys 80(1):288–294. https://doi.org/10.1063/1.362818

    Article  CAS  Google Scholar 

  57. Schmitsdorf RF, Kampen TU, Mönch W (1995) Correlation between barrier height and interface structure of AgSi (111) Schottky diodes. Surf Sci 324(2–3):249–256. https://doi.org/10.1016/0039-6028(94)00791-8

    Article  CAS  Google Scholar 

  58. Lamport ZA, Broadnax AD, Harrison D, Barth KJ, Mendenhall L, Hamilton CT et al (2016) Fluorinated benzalkylsilane molecular rectifiers. Sci Rep 6(1):1–8. https://doi.org/10.1038/srep38092

    Article  CAS  Google Scholar 

  59. Tung RT (1984) Schottky-barrier formation at single-crystal metal-semiconductor interfaces. Phys Rev Lett 52(6):461. https://doi.org/10.1103/physrevlett.52.461

    Article  CAS  Google Scholar 

  60. Sharma A, Kumar P, Singh B, Chaudhuri SR, Ghosh S (2011) Capacitance-voltage characteristics of organic Schottky diode with and without deep traps. Appl Phys Lett 99(2):130. https://doi.org/10.1063/1.3607955

    Article  CAS  Google Scholar 

  61. Mahato S, Biswas D, Gerling LG, Voz C, Puigdollers J (2017) Analysis of temperature dependent current-voltage and capacitance-voltage characteristics of an Au/V2O5/n-Si Schottky diode. AIP Adv 7(8):085313. https://doi.org/10.1063/1.4993553

    Article  CAS  Google Scholar 

  62. Schubert E (1993) Doping in III-V semiconductors. Cambridge University Press, Cambridge, p 279

    Google Scholar 

  63. Lee MJ, Park Y, Suh DS, Lee EH, Seo S, Kim DC et al (2007) Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv Mater 19(22):3919–3923. https://doi.org/10.1002/adma.200700251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rajeev Joshi acknowledges Vision Group of Science and Technology (VGST), Bengaluru and University Grants Commission (UGC), Delhi and Central University of Karnataka for the financial support to carryout this work. R Mallikarjun acknowledges the University Grants Commission (UGC), Delhi for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Joshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallikarjun, R., Mohammedi, A., Kembhavi, V. et al. Thermal Grafting of Benzaldehyde for Preparing Catalytically Active Silicon Surface Evaluated by Electrical Methods. Top Catal (2022). https://doi.org/10.1007/s11244-022-01582-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-022-01582-w

Keywords

Navigation