Skip to main content
Log in

Enhanced Frictional Properties of NiO-Based Nanocomposites with the Addition of GDC

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The tribological performance and friction-induced vibration of Gd0.2-Ce0.8O1.9 (GDC) reinforced nickel oxide (NiO) metal matrix composites prepared via sintering on the tribological performance, as well as friction induced vibration were investigated. Compared to pure NiO, the composites exhibit improved mechanical properties, such as a relatively high dislocation density, hardness and small grain size. The results show that GDC-reinforced NiO nanocomposites feature improved tribological performance and can suppress the occurrence of friction-induced vibration under variable loading conditions. Furthermore, the generated acceleration can be suppressed by wear particles generated during the friction process, acting as the third body at the contact interface. As a result, the addition of GDC reduces the grain size of the composite, increases hardness, and improves tribological properties through the synergetic effect of the solid lubricating action of NiO and the role of the third body of the wear particle.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sheikh-Ahmad, J., Davim, J.P.: Tool wear in machining processes for composites. Machining technology for composite materials, pp. 116–153. Woodhead Publishing, Cambridge (2012)

    Book  Google Scholar 

  2. Ibrahim, I., Mohamed, F., Lavernia, E.: Particulate reinforced metal matrix composites—a review. J. Mater. Sci. 26(5), 1137–1156 (1991)

    Article  CAS  Google Scholar 

  3. Aruna, S., et al.: Synthesis and properties of electrodeposited Ni/ceria nanocomposite coatings. Surf. Coat. Technol. 200(24), 6871–6880 (2006)

    Article  CAS  Google Scholar 

  4. Hovestad, A., Janssen, L.: Electrochemical codeposition of inert particles in a metallic matrix. J. Appl. Electrochem. 25(6), 519–527 (1995)

    Article  CAS  Google Scholar 

  5. Clauss, F.J.: Solid lubricants and self-lubricating solids. Academic press, Cambridge (1972)

    Google Scholar 

  6. Scharf, T., Prasad, S.: Solid lubricants: a review. J. Mater. Sci. 48(2), 511–531 (2013)

    Article  CAS  Google Scholar 

  7. Flores, J., et al.: An experimental study of the erosion–corrosion behavior of plasma transferred arc MMCs. Wear 267(1–4), 213–222 (2009)

    Article  CAS  Google Scholar 

  8. Rahman, M.S., et al.: Tribology of incoloy 800HT for nuclear reactors under helium environment at elevated temperatures. Wear 436, 203022 (2019)

    Article  Google Scholar 

  9. Aruna, S., Grips, V.W., Rajam, K.: Ni-based electrodeposited composite coating exhibiting improved microhardness, corrosion and wear resistance properties. J. Alloys Compd. 468(1–2), 546–552 (2009)

    Article  CAS  Google Scholar 

  10. Shu, D., et al.: In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding. Mater. Lett. 195, 178–181 (2017)

    Article  CAS  Google Scholar 

  11. Xuelong, P., et al.: Effect of Nb addition on microstructure and properties of laser cladding NiCrBSi coatings. Trans. IMF 96(6), 304–312 (2018). https://doi.org/10.1080/00202967.2018.1502934

    Article  CAS  Google Scholar 

  12. Stott, F., Wood, G.: The influence of oxides on the friction and wear of alloys. Tribol. Int. 11(4), 211–218 (1978)

    Article  CAS  Google Scholar 

  13. Hager, C., Jr., et al.: The mechanisms of gross slip fretting wear on nickel oxide/Ti6Al4V mated surfaces. Wear 268(9–10), 1195–1204 (2010)

    Article  CAS  Google Scholar 

  14. Masouros, G., Dimarogonas, A., Lefas, K.: A model for wear and surface roughness transients during the running-in of bearings. Wear 45(3), 375–382 (1977)

    Article  Google Scholar 

  15. Chen, L., et al.: Running-in process of Si-SiO x/SiO 2 pair at nanoscale—sharp drops in friction and wear rate during initial cycles. Friction 1(1), 81–91 (2013)

    Article  CAS  Google Scholar 

  16. Chi, H., et al.: The tribological behavior evolution of TiB2/Al composites from running-in stage to steady stage. Wear 368, 304–313 (2016)

    Article  Google Scholar 

  17. Marian, M., et al.: MXene nanosheets as an emerging solid lubricant for machine elements—towards increased energy efficiency and service life. Appl. Surf. Sci. 523, 146503 (2020)

    Article  CAS  Google Scholar 

  18. Pattnaik, A.B., Das, S.: Probability of formation of wear debris during initial running-in period of sliding wear of Al-Si (LM13)-10 wt.% fly ash composites. J. Mater. Eng. Perform. 29(11), 7480–7487 (2020)

    Article  Google Scholar 

  19. Nwanya, A.C., et al.: Zea mays lea silk extract mediated synthesis of nickel oxide nanoparticles as positive electrode material for asymmetric supercabattery. J. Alloys Compd. 822, 153581 (2020)

    Article  CAS  Google Scholar 

  20. Tromans, D., Meech, J.: Fracture toughness and surface energies of minerals: theoretical estimates for oxides, sulphides, silicates and halides. Miner. Eng. 15(12), 1027–1041 (2002)

    Article  CAS  Google Scholar 

  21. Phuong, D.D., et al.: Influence of sintering temperature on microstructure and mechanical properties of WC-8Ni cemented carbide produced by vacuum sintering. Ceram. Int. 42(13), 14937–14943 (2016)

    Article  CAS  Google Scholar 

  22. Morales, M., et al.: Mechanical properties at the nanometer scale of GDC and YSZ used as electrolytes for solid oxide fuel cells. Acta Mater. 58(7), 2504–2509 (2010)

    Article  CAS  Google Scholar 

  23. Muthukkumaran, K., et al.: Thermal properties of 15-mol% gadolinia doped ceria thin films prepared by pulsed laser ablation. Ionics 13(1), 47–50 (2007)

    Article  CAS  Google Scholar 

  24. Lee, Y.H., et al.: Platinum-based nanocomposite electrodes for low-temperature solid oxide fuel cells with extended lifetime. J. Power Sources 307, 289–296 (2016)

    Article  CAS  Google Scholar 

  25. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  CAS  Google Scholar 

  26. Anstis, G., et al.: A critical evaluation of indentation techniques for measuring fracture toughness: i, direct crack measurements. J. Am. Ceram. Soc. 64(9), 533–538 (1981)

    Article  CAS  Google Scholar 

  27. Chavan, A., et al.: Effect of variation of NiO on properties of NiO/GDC (gadolinium doped ceria) nano-composites. Ceram. Int. 38(4), 3191–3196 (2012)

    Article  CAS  Google Scholar 

  28. Nafsin, N., et al.: Thermodynamics versus kinetics of grain growth control in nanocrystalline zirconia. Acta Mater. 136, 224–234 (2017)

    Article  CAS  Google Scholar 

  29. Soares, M.R., et al.: Unraveling the role of Sn segregation in the electronic transport of polycrystalline hematite: raising the electronic conductivity by lowering the grain-boundary blocking effect. Adv. Electron. Mater. 5(6), 1900065 (2019)

    Article  Google Scholar 

  30. Estrin, Y., Vinogradov, A.: Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61(3), 782–817 (2013)

    Article  CAS  Google Scholar 

  31. Zehetbauer, M., Seumer, V.: Cold work hardening in stages IV and V of FCC metals—I. Experiments and interpretation. Acta Metal. Mater. 41(2), 577–588 (1993)

    Article  CAS  Google Scholar 

  32. Pantleon, W.: Formation of disorientations in dislocation structures during plastic deformation. In: Solid state phenomena. Trans Tech Publications Ltd., Switzerland (2002)

    Google Scholar 

  33. Hadzima, B., et al.: Microstructure and corrosion behaviour of ultrafine-grained copper. In: Materials science forum. Trans Tech Publications Ltd., Switzerland (2006)

    Google Scholar 

  34. Shi, J., Zikry, M.: Grain size, grain boundary sliding, and grain boundary interaction effects on nanocrystalline behavior. Mater. Sci. Eng. A 520(1–2), 121–133 (2009)

    Article  Google Scholar 

  35. Wang, A., et al.: Effect of surface roughness on friction-induced noise: exploring the generation of squeal at sliding friction interface. Wear 402, 80–90 (2018)

    Article  Google Scholar 

  36. Wang, X., et al.: An investigation of stick-slip oscillation of Mn–Cu damping alloy as a friction material. Tribol. Int. 146, 106024 (2020)

    Article  CAS  Google Scholar 

  37. Lu, G., et al.: Effects of functionally gradient structure of Ni3Al metal matrix self-lubrication composites on friction-induced vibration and noise and wear behaviors. Tribol. Int. 135, 75–88 (2019)

    Article  CAS  Google Scholar 

  38. Candan, E., Ahlatci, H., H. Çı̈menoğlu, : Abrasive wear behaviour of Al–SiC composites produced by pressure infiltration technique. Wear 247(2), 133–138 (2001)

    Article  CAS  Google Scholar 

  39. Kumar, S., et al.: Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites. Wear 265(1–2), 134–142 (2008)

    Article  CAS  Google Scholar 

  40. Kala, H., Mer, K., Kumar, S.: A review on mechanical and tribological behaviors of stir cast aluminum matrix composites. Procedia Mater. Sci. 6, 1951–1960 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2019R1A2C4070158).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wonyoung Lee or YoungZe Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Ahn, M., Han, S. et al. Enhanced Frictional Properties of NiO-Based Nanocomposites with the Addition of GDC. Tribol Lett 69, 71 (2021). https://doi.org/10.1007/s11249-021-01449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01449-3

Keywords

Navigation