Skip to main content
Log in

Friction and Wear Properties of Copper Matrix Composites with CNTs/Cu Composite Foams as Reinforcing Skeletons

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Copper matrix composites with carbon nanotubes/Cu composite foams as the reinforcing skeletons (CNTs/Cuf®Cu) were prepared by electrodeposition and spark plasma sintering. The microstructure and tribological properties of the composites were studied. The CNTs reinforcements with the content up to 0.283 vol% remained uniformly distributed in the skeleton zone and led to quite different structure and properties as compared to the pure copper zone. Significant reduction of the friction coefficient and wear rate was shown with CNTs reinforcements in the skeleton up to a certain content. The wear surface morphology was analyzed and the possible wear mechanism was discussed for the composites with such an inhomogeneous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yang, M., Weng, L., Zhu, H., Fan, T., Zhang, D.: Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons. Carbon 118, 250–260 (2017)

    CAS  Google Scholar 

  2. Bakshi, S.R., Lahiri, D., Agarwal, A.: Carbon nanotube reinforced metal matrix composites—a review. Metall. Rev. 55(1), 41–64 (2010)

    CAS  Google Scholar 

  3. Singh, A., Ram Prabhu, T., Sanjay, A.R., Koti, V.: An overview of processing and properties of CU/CNT nano composites. Mater. Today 4, 3872–81 (2017)

    Google Scholar 

  4. Wang, X., Guo, B., Ni, S., Yi, J., Song, M.: Acquiring well balanced strength and ductility of Cu/CNTs composites with uniform dispersion of CNTs and strong interfacial bonding. Mater. Sci. Eng. A 733, 144–152 (2018)

    CAS  Google Scholar 

  5. Lee, D., Sim, J., Kim, W., Moon, C., Cho, W., Baik, S.: Enhanced electrical conductivity and hardness of silver-nickel composites by silver-coated multi-walled carbon nanotubes. Nanotechnology 26(29), 295705 (2015)

    Google Scholar 

  6. Deng, H., Yi, J., Xia, C., Yi, Y.: Mechanical properties and microstructure characterization of well-dispersed carbon nanotubes reinforced copper matrix composites. J. Alloys Compd. 727, 260–268 (2017)

    CAS  Google Scholar 

  7. He, C., Zhao, N., Shi, C., Liu, E., Li, J.: Fabrication of nanocarbon composites using in situ chemical vapor deposition and their applications. Adv. Mater. 27(36), 5422–5431 (2015)

    CAS  Google Scholar 

  8. Jafari, J., Givi, M.K.B., Barmouz, M.: Erratum to: mechanical and microstructural characterization of Cu/CNT nanocomposite layers fabricated via friction stir processing. Int. J. Adv. Manuf. Technol. 85, 943 (2016). https://doi.org/10.1007/s00170-016-8391-0

    Article  Google Scholar 

  9. Chen, B., Li, S., Imai, H., Jia, L., Umeda, J., Takahashi, M., Kondoh, K.: An approach for homogeneous carbon nanotube dispersion in Al matrix composites. Mater. Des. 72, 1–8 (2015)

    CAS  Google Scholar 

  10. Zhou, W., Bang, S., Kurita, H., Miyazaki, T., Fan, Y., Kawasaki, A.: Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminium matrix composites. Carbon 96, 919–928 (2016)

    CAS  Google Scholar 

  11. Wang, H., Zhang, Z.-H., Zhang, H.-M., Hu, Z.-Y., Li, S.-L., Cheng, X.-W.: Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes. Mater. Sci. Eng. A 696, 80–89 (2017)

    CAS  Google Scholar 

  12. Wang, Z., Cai, X., Yang, C., Zhou, L., Hu, C.: An electrodeposition approach to obtaining carbon nanotubes embedded copper powders for the synthesis of copper matrix composites. J. Alloys Compd. 735, 1357–1362 (2018)

    CAS  Google Scholar 

  13. Darabi, M., Rajabi, M., Nasiri, N.: Microstructural, mechanical and thermal properties of microwave sintered Cu-MWCNT nanocomposites. J. Alloys Compd. 822, 153675 (2020)

    CAS  Google Scholar 

  14. Yang, P., You, X., Yi, J., Fang, D., Bao, R., Shen, T., Liu, Y., Tao, J., Li, C.: Influence of dispersion state of carbon nanotubes on electrical conductivity of copper matrix composites. J. Alloys Compd. 752, 376–380 (2018)

    CAS  Google Scholar 

  15. Huang, L.J., Geng, L., Peng, H.X.: Microstructurally inhomogeneous composites: is a homogeneous reinforcement distribution optimal? Prog. Mater. Sci. 71, 93–168 (2015)

    CAS  Google Scholar 

  16. Shuai, J., Xiong, L., Zhu, L., Li, W.: Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite. Compos. A Appl. Sci. Manuf. 88, 148–155 (2016)

    CAS  Google Scholar 

  17. Chen, X., Tao, J., Yi, J., Li, C., Bao, R., Liu, Y., You, X., Tan, S.: Balancing the strength and ductility of carbon nanotubes reinforced copper matrix composites with microlaminated structure and interdiffusion interface. Mater. Sci. Eng. A 712, 790–793 (2018)

    CAS  Google Scholar 

  18. Zhang, X., Zhao, N., He, C.: The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design: a review. Prog. Mater. Sci. 113, 100672 (2020)

    CAS  Google Scholar 

  19. Wang, C., Gan, X., Tao, J., Xie, M., Yi, J., Liu, Y.: Simultaneous achievement of high strength and high ductility in copper matrix composites with carbon nanotubes/Cu composite foams as reinforcing skeletons. Nanotechnology 31(4), 45701 (2020)

    CAS  Google Scholar 

  20. Dong, S.R., Tu, J.P., Zhang, X.B.: An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Mater. Sci. Eng. A 313(1), 83–87 (2001)

    Google Scholar 

  21. Jayathilaka, W.A.D.M., Chinnappan, A., Ramakrishna, S.: A review of properties influencing the conductivity of CNT/Cu composites and their applications in wearable/flexible electronics. J. Mater. Chem. C 5(36), 9209–9237 (2017)

    CAS  Google Scholar 

  22. Tsai, P.-C., Jeng, Y.-R., Lee, J.-T., Stachiv, I., Sittner, P.: Effects of carbon nanotube reinforcement and grain size refinement mechanical properties and wear behaviors of carbon nanotube/copper composites. Diam. Relat. Mater. 74, 197–204 (2017)

    CAS  Google Scholar 

  23. Congzhen, W., Xueping, G., Jingmei, T., Ming, X., Jianhong, Y., Yichun, L.: Compression and electromagnetic shielding properties of CNTs reinforced copper foams prepared through electrodeposition. Vacuum 167, 159–162 (2019)

    Google Scholar 

  24. Kim, G.M., Michler, G.H., Potschke, P.: Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer 46(18), 7346–7351 (2005)

    CAS  Google Scholar 

  25. Peng Qunjia, Mu., Daobin, M.J., Xiangyun, T.: Study on the mechanism of Ni/ZrO2 composite electrodeposition. J. Electrochem. 5(1), 68–73 (1999)

    Google Scholar 

  26. Jenei, P., Gubicza, J., Yoon, E.Y., Kim, H.S., Lábár, J.L.: High temperature thermal stability of pure copper and copper–carbon nanotube composites consolidated by high pressure torsion. Compos. A Appl. Sci. Manuf. 51, 71–79 (2013)

    CAS  Google Scholar 

  27. Suarez, S., Lasserre, F., Soldera, F., Pippan, R., Mücklich, F.: Microstructural thermal stability of CNT-reinforced composites processed by severe plastic deformation. Mater. Sci. Eng. A 626, 122–127 (2015)

    CAS  Google Scholar 

  28. Jeong, G., Park, J., Kang, S., Choi, H.: Strategies to suppress grain growth of nanocrystalline aluminum. Trans. Nonferrous Metals Soc. China 24, s112–s118 (2014)

    CAS  Google Scholar 

  29. Lipecka, J., Andrzejczuk, M., Lewandowska, M., Janczak-Rusch, J., Kurzydłowski, K.J.: Evaluation of thermal stability of ultrafine grained aluminium matrix composites reinforced with carbon nanotubes. Compos. Sci. Technol. 71(16), 1881–1885 (2011)

    CAS  Google Scholar 

  30. Dudina, D.V., Mukherjee, A.K.: Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J. Nanomater. 2013, 625218 (2013)

    Google Scholar 

  31. Choi, H.J., Lee, S.M., Bae, D.H.: Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes. Wear 270(1), 12–18 (2010)

    CAS  Google Scholar 

  32. Wang, P., Deng, G., Zhu, H., Zhang, H., Yin, J., Xiong, X., Wu, X.: Effect of MWCNT content on conductivity and mechanical and wear properties of copper foam/resin composite. Compos. B Eng. 168, 572–580 (2019)

    CAS  Google Scholar 

  33. Liu, L., Li, W., Tang, Y., Shen, B., Hu, W.: Friction and wear properties of short carbon fiber reinforced aluminum matrix composites. Wear 266(7–8), 733–738 (2009)

    CAS  Google Scholar 

  34. Yang, H., Zhu, M., Li, W.: Friction and wear behaviors of short carbon fibre reinforced copper matrix composites with electric current. Special Cast. Nonferrous Alloys 8, 765–768 (2013)

    Google Scholar 

  35. Moghadam, A.D., Omrani, E., Menezes, P.L., Rohatgi, P.K.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) andgraphene: a review. Compos. B 77, 402–420 (2015)

    Google Scholar 

  36. Lin, C.B., Chang, Z.-C., Tung, Y.H., Ko, Y.-Y.: Manufacturing and tribological properties of copper matrix/carbon nanotubes composites. Wear 270(5), 382–394 (2011)

    CAS  Google Scholar 

  37. Chen, B., Li, X., Xiang, L., Jia, Y., Jin, Y., Yang, G., Li, C.: Friction and wear properties of polyimide-based composites with a multiscale carbon fiber-carbon nanotube hybrid. Tribol. Lett. 65(3), 111 (2017)

    Google Scholar 

  38. Zhou, M., Mai, Y., Ling, H., Chen, F., Lian, W., Jie, X.: Electrodeposition of CNTs/copper composite coatings with enhanced tribological performance from a low concentration CNTs colloidal solution. Mater. Res. Bull. 97, 537–543 (2018)

    CAS  Google Scholar 

  39. Prakash, K.S., Thankachan, T., Radhakrishnan, R.: Parametric optimization of dry sliding wear loss of copper–MWCNT composites. Trans. Nonferrous Metals Soc. China 27(3), 627–637 (2017)

    CAS  Google Scholar 

  40. Tang, Y., Liu, H., Zhao, H., Liu, L., Yating, W.U.: Friction and wear properties of copper matrix composites reinforced with short carbon fibers. Mater. Des. 29(1), 257–261 (2008)

    CAS  Google Scholar 

  41. Mokhtar, M.O.A.: The effect of hardness on the frictional behaviour of metals. Wear 78(3), 297–304 (1982)

    CAS  Google Scholar 

  42. Tsai, P.-C., Stachiv, I., Lee, J.-T., Sittner, P., Jeng, Y.-R.: Effects of carbon nanotube reinforcement and grain size refinement mechanical properties and wear behaviors of carbon nanotube/copper composites. Diam. Relat. Mater. 74, 197–204 (2017)

    CAS  Google Scholar 

  43. Chen, W.X., Tu, J.P., Wang, L.Y., Gan, H.Y., Xu, Z.D., Zhang, X.B.: Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2), 215–222 (2003)

    CAS  Google Scholar 

  44. Zou, A., Li, D.: Effect of carbon nanotube on the oscillating wear behaviour of metal-PTFE multilayer composites. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 1271–1274 (2018). https://doi.org/10.1007/s11595-018-1962-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51861014, 52071169 & 51864029) and Science Research Project of Yunnan Province (Grant Nos. 202002AB080001 & 202001AT070082). The authors would like to thank Instrumental Analysis Center of KUST and Yunnan University for sample characterization.

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52071169, 51861014, & 51864029) and Science Research Project of Yunnan Province (Grant Nos. 202002AB080001 & 202001AT070082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yichun Liu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wu, Z., Li, F. et al. Friction and Wear Properties of Copper Matrix Composites with CNTs/Cu Composite Foams as Reinforcing Skeletons. Tribol Lett 69, 120 (2021). https://doi.org/10.1007/s11249-021-01500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01500-3

Keywords

Navigation