Skip to main content
Log in

Asking students to be active learners: the effects of totally or partially self-generating a graphic organizer on students’ learning performances

  • Original Research
  • Published:
Instructional Science Aims and scope Submit manuscript

Abstract

We compared performances on a learning task in which students (N = 81) viewed a pedagogical multimedia document without (control group) or with a readymade graphic organizer (readymade group) with performances on an active learning task where students self-generated a graphic organizer either totally (total self-generated group) or partially (partial self-generated group) while learning from the same multimedia document. According to the generative hypothesis, asking students to actively engage in the construction of a graphic organizer enhances their learning, owing to the generative processes (selection, organization, integration) required to perform the task. However, according to the cognitive load hypothesis, generating a graphic organizer can hinder students’ learning, owing to the extraneous processing elicited by the task. It can nonetheless be assumed that if scaffolding is provided to students in the shape of an empty graphic organizer to fill in, these negative effects can be avoided. Results confirmed the beneficial effect of providing a graphic organizer on students’ retention of the elements contained in the multimedia document (macrostructure information, hierarchical relations). Evidence in favor of the cognitive load hypothesis and against the generative hypothesis was found, as students in the total self-generated group performed more poorly on the retention and transfer tests than those in the readymade group. This negative effect on learning ceased to be observed when scaffolding was provided to students in the partial self-generated group, although they still spent more time on the document than those in the readymade group. Overall, we failed to observe any beneficial effect of generation on learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amadieu, F., & Tricot, A. (2015). Les facteurs psychologiques qui ont un effet sur la réussite des étudiants. Recherche et Pratiques Pédagogiques en Langues de Spécialité - Cahiers de l APLIUT, XXXIV(2).

  • Britt, M. A., Richter, T., & Rouet, J. F. (2014). Scientific literacy: The role of goal-directed reading and evaluation in understanding scientific information. Educational Psychologist, 49(2), 104–122.

    Article  Google Scholar 

  • Chang, K. E., Sung, Y. T., & Chen, S. F. (2001). Learning through computer-based concept mapping with scaffolding aid. Journal of Computer Assisted Learning, 17(1), 21–33.

    Article  Google Scholar 

  • Colliot, T., & Jamet, É. (2018a). Does self-generating a graphic organizer improve students’ learning? Computers & Education, 126, 13–22.

    Article  Google Scholar 

  • Colliot, T., & Jamet, É. (2018b). How does adding versus self-generating a hierarchical outline while learning from a multimedia document influence students’ performances? Computers in Human Behavior, 80, 354–361.

    Article  Google Scholar 

  • Daher, T. A., & Kiewra, K. A. (2016). An investigation of SOAR study strategies for learning from multiple online resources. Contemporary Educational Psychology, 46, 10–21.

    Article  Google Scholar 

  • DeLeeuw, K. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology, 100(1), 223–234.

    Article  Google Scholar 

  • Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity: Eight learning strategies that promote understanding. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Fiorella, L., & Mayer, R. E. (2016). Eight ways to promote generative learning. Educational Psychology Review, 28(4), 717–741.

    Article  Google Scholar 

  • Fiorella, L., & Mayer, R. E. (2017). Spontaneous spatial strategy use in learning from scientific text. Contemporary Educational Psychology, 49, 66–79.

    Article  Google Scholar 

  • Fredricks, J. A., & McColskey, W. (2012). The measurement of student engagement: A comparative analysis of various methods and student self-report instruments. Handbook of research on student engagement (pp. 763–782). Boston: Springer.

    Chapter  Google Scholar 

  • Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59–109.

    Article  Google Scholar 

  • Gurlitt, J., & Renkl, A. (2008). Are high-coherent concept maps better for prior knowledge activation? Differential effects of concept mapping tasks on high school vs. university students. Journal of Computer Assisted Learning, 24(5), 407–419.

    Article  Google Scholar 

  • Gurlitt, J., & Renkl, A. (2010). Prior knowledge activation: How different concept mapping tasks lead to substantial differences in cognitive processes, learning outcomes, and perceived self-efficacy. Instructional Science, 38(4), 417–433.

    Article  Google Scholar 

  • Hilbert, T. S., & Renkl, A. (2005). Individual differences in concept mapping when learning from texts. In B. G. Bara, L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the 27th annual conference of the Cognitive Science Society (pp. 947–952). Mahwah, NJ: Erlbaum.

  • Hilbert, T. S., & Renkl, A. (2008). Concept mapping as a follow-up strategy to learning from texts: What characterizes good and poor mappers? Instructional Science, 36(1), 53–73.

    Article  Google Scholar 

  • Jairam, D., & Kiewra, K. A. (2010). Helping students soar to success on computers: An investigation of the SOAR study method for computer-based learning. Journal of Educational Psychology, 102(3), 601–614.

    Article  Google Scholar 

  • Jamet, E. (2014). An eye-tracking study of cueing effects in multimedia learning. Computers in Human Behavior, 32, 47–53.

    Article  Google Scholar 

  • Kendeou, P., Van Den Broek, P., Helder, A., & Karlsson, J. (2014). A cognitive view of reading comprehension: Implications for reading difficulties. Learning Disabilities Research & Practice, 29(1), 10–16.

    Article  Google Scholar 

  • Kiewra, K. A. (2004). Learn how to study and SOAR to success. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Kiewra, K. A., Kauffman, D. F., Robinson, D., DuBois, N., & Staley, R. K. (1999). Supplementing floundering text with adjunct displays. Journal of Instructional Science, 27, 373–401.

    Google Scholar 

  • Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95(2), 163–182.

    Article  Google Scholar 

  • Kintsch, W. (1998). Comprehension: A paradigm for cognition. New York: Cambridge University Press.

    Google Scholar 

  • Kintsch, W., & Van Dijk, T. A. (1978). Toward a model of text comprehension and production. Psychological Review, 85(5), 363–394.

    Article  Google Scholar 

  • Lonka, K., Lindblom-Ylänne, S., & Maury, S. (1994). The effect of study strategies on learning from text. Learning and Instruction, 4(3), 253–271.

    Article  Google Scholar 

  • Mayer, R. E. (1996). Learning strategies for making sense out of expository text: The SOI model for guiding three cognitive processes in knowledge construction. Educational Psychology Review, 8(4), 357–371.

    Article  Google Scholar 

  • Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.

    Book  Google Scholar 

  • Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 3–48). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Mayer, R. E. (2014). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 43–71). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • McCrudden, M. T., Schraw, G., Lehman, S., & Poliquin, A. (2007). The effect of causal diagrams on text learning. Contemporary Educational Psychology, 32(3), 367–388.

    Article  Google Scholar 

  • McCrudden, M. T., Schraw, G., & Lehman, S. (2009). The use of adjunct displays to facilitate comprehension of causal relationships in expository text. Instructional Science, 37(1), 65–86.

    Article  Google Scholar 

  • McNamara, D. S., & Magliano, J. (2009). Toward a comprehensive model of comprehension. Psychology of Learning and Motivation, 51, 297–384.

    Article  Google Scholar 

  • Moreno, R., & Valdez, A. (2005). Cognitive load and learning effects of having students organize pictures and words in multimedia environments: The role of student interactivity and feedback. Educational Technology Research and Development, 53(3), 35–45.

    Article  Google Scholar 

  • Moreno, R., Reislein, M., & Ozogul, G. (2010). Using virtual peers to guide visual attention during learning: A test of the persona hypothesis. Journal of Media Psychology, 22(2), 52–60.

    Article  Google Scholar 

  • Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429–434.

    Article  Google Scholar 

  • Paivio, A. (1986). Mental representations: A dual-coding approach. Oxford: Oxford University Press.

    Google Scholar 

  • Ponce, H. R., & Mayer, R. E. (2014). An eye movement analysis of highlighting and graphic organizer study aids for learning from expository text. Computers in Human Behavior, 41, 21–32.

    Article  Google Scholar 

  • Robinson, D. H., & Kiewra, K. A. (1995). Visual argument: Graphic organizers are superior to outlines in improving learning from text. Journal of Educational Psychology, 87(3), 455–467.

    Article  Google Scholar 

  • Robinson, D. H., & Schraw, G. (1994). Computational efficiency through visual argument: Do graphic organizers communicate relations in text too effectively? Contemporary Educational Psychology, 19, 399–415.

    Article  Google Scholar 

  • Skinner, E. A., & Belmont, M. J. (1993). Motivation in the classroom: Reciprocal effects of teacher behavior and student engagement across the school year. Journal of Educational Psychology, 85(4), 571–581.

    Article  Google Scholar 

  • Stull, A. T., & Mayer, R. E. (2007). Learning by doing versus learning by viewing: Three experimental comparisons of learner-generated versus author-provided graphic organizers. Journal of Educational Psychology, 99(4), 808–820.

    Article  Google Scholar 

  • Van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension (pp. 11–12). New York: Academic Press.

    Google Scholar 

  • Vekiri, I. (2002). What is the value of graphical displays in learning? Educational Psychology Review, 14(3), 261–312.

    Article  Google Scholar 

  • Weinstein, C. E. (1987). Fostering learning autonomy through the use of learning strategies. Journal of Reading, 30(7), 590–595.

    Google Scholar 

  • Weinstein, C. E., Acee, T. W., & Jung, J. (2011). Self-regulation and learning strategies. New Directions for Teaching and Learning, 2011(126), 45–53.

    Article  Google Scholar 

  • Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 24(4), 345–376. https://doi.org/10.1207/s15326985ep2404_2.

    Article  Google Scholar 

  • Wittrock, M. C. (1991). Generative teaching of comprehension. The Elementary School Journal, 92(2), 169–184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiphaine Colliot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colliot, T., Jamet, É. Asking students to be active learners: the effects of totally or partially self-generating a graphic organizer on students’ learning performances. Instr Sci 47, 463–480 (2019). https://doi.org/10.1007/s11251-019-09488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11251-019-09488-z

Keywords

Navigation