Skip to main content

Advertisement

Log in

Conservation of fragmented grasslands as part of the urban green infrastructure: how important are species diversity, functional diversity and landscape functionality?

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Natural remnants, such as fragmented grasslands form an integral part of the urban green infrastructure in the Grassland biome of South Africa. Nearly 30 % of natural grasslands are transformed with only 1 % formally conserved. Since grassland habitats are globally regarded as a biodiversity conservation priority, protection should be accorded outside formal conservation areas as well. However, urban grassland fragments are often regarded as highly transformed, and are therefore targeted for development rather than conservation. The aim of this study was to compare plant species composition, −diversity and -functional diversity, as well as the fine-scale biophysical landscape functionality of grassland fragments in urban and exurban areas in the vulnerable Rand Highveld Grassland vegetation type in the Tlokwe Municipal area of South Africa. Thirty selected grassland fragments were investigated along an urbanisation (urban-exurban) gradient that was quantified using several demographic- and physical variables as well as landscape metrics, each reflecting a pattern or process associated with urbanisation. Plant species composition, −diversity, and -life history traits were determined in randomly selected sample plots. Functional diversity indices were also calculated to describe the composition and distribution of plant functional traits in the selected grassland fragments. Additionally, landscape functionality, in terms of how effectively the landscape is functioning as a biophysical system, was determined using the Landscape Function Analysis (LFA) method. LFA provides information such as fine-scale resource conserving patchiness, soil surface stability, infiltration, and nutrient cycling. The fine-scale biophysical landscape function of urban and exurban landscapes are comparable, indicating that urban grassland fragments are worthy of conservation on a biophysical landscape function scale. However, differences in plant species diversity, functional trait composition, and plant functional diversity were evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acocks JPH (1988) Veld Types of South Africa. Memoirs of the Botanical Survey of South Africa No.57. Botanical Research Institute, Department of Agriculture and Water Supply, South Africa.

  • Ahern J (1995) Greenways as a planning strategy. Landscape Urban Plan 33:131–155

    Google Scholar 

  • Ahern J (2007) Green infrastructure for cities: the spatial dimension. In: Novotny P, Brown P (eds) Cities of the future: towards integrated sustainable water and landscape management. IWA Publishing, London, pp 267–283

    Google Scholar 

  • Alberti M (2010) Maintaining ecological integrity and sustaining ecosystem function in urban areas. Curr Opin Environ Sust 2:178–184

    Google Scholar 

  • Aronson MFJ, Handel SN, Clemants SE (2007) Fruit type, life form and origin determine the success of woody plant invaders in an urban landscape. Biol Invasions 9(4):465–475

    Google Scholar 

  • Ashman MR, Puri G (2002). Essential soil science: a clear concise introduction to soil science. Blackwell Science Ltd.

  • Baldwin DJB, Weaver K, Schnekenburger F, Perera AH (2004) Sensitivity of landscape pattern indices to input data characteristics on real landscapes: implications for their use in natural disturbance emulation. Landscape Ecol 19:255–271

    Google Scholar 

  • Baraloto C, Hérault B, Paine CET, Massot H, Blanc L, Bonal D, Molino J-F, Nicolini EA, Sabatier D (2012) Contrasting taxonomic and functional responses of a tropical tree community to selective logging. J Appl Ecol 49(4):861–870

    Google Scholar 

  • Barragán F, Moreno CE, Escobar F, Halffter G, Navarrete D (2011) Negative impacts of human land use on dung beetle functional diversity. PLoS One 6(3):1–8

    Google Scholar 

  • Basilevsky A (1994) Statistical factor analysis and related methods, theory and applications. Wiley, Yew York

    Google Scholar 

  • Bastin GN, Ludwig JA, Eager RW, Chewings VH, Liedloff AC (2002) Indicators of landscape function: comparing patchiness metrics using remotely-sensed data from rangelands. Ecol Indic 1(4):247–260

    Google Scholar 

  • Benedict MA, McMahon ET (2002) Green infrastructure: smart conservation for the 21st century. Renew Resour J 20(3):12–17

    Google Scholar 

  • Biswas SR, Malik AU (2010) Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology 91(1):28–35

    PubMed  Google Scholar 

  • Boerner RJE (1982) Fire and nutrient cycling in temperate ecosystems. Bioscience 32(3):187–192

    Google Scholar 

  • Bond WJ, Midgley GF, Woodward FI (2003) What controls South African vegetation – climate or fire? S Afr J Bot 69(1):79–91

    Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165(2):525–538

    CAS  PubMed  Google Scholar 

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540

    Google Scholar 

  • Brase CH, Brase CP (1999) Understandable statistics: concepts and methods, 6th edn. Houghton Mifflin Company, Boston

    Google Scholar 

  • Brown DG, Duh J-D, Drzyzga SA (2000) Estimating error in an analysis of forest fragmentation change using North American landscape characterisation (NALC) data. Remote Sens Environ 71:106–117

    Google Scholar 

  • Cadenasso ML, Pickett STA, Weathers KC, Jones CG (2003) A framework for theory of ecological boundaries. Bioscience 53(8):750–758

    Google Scholar 

  • Casanoves F, Pla L, Di Rienzo JA, Díaz S (2010) FDiversity: a software package for the integrated analysis of functional diversity. Methods Ecol Evol 2:233–237

    Google Scholar 

  • CCAP (Center for Clean Air Policy) (2011) The value of green infrastructure for urban climate adaptation. CCAP, DC.

  • Čepelová B, Műnzbergová Z (2012) Factors determining the plant species diversity and species composition in a suburban landscape. Landscape Urban Plan 106(4):336–346

    Google Scholar 

  • Chapin FS, III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer-Verlag.

  • Cifaldi RL, Allan JD, Duh J-D, Brown DG (2004) Spatial patterns in land cover of exurbanising watersheds in southeastern Michigan. Landscape Urban Plan 66:107–123

    Google Scholar 

  • Cilliers SS, Williams NSG, Barnard FJ (2008) Patterns of exotic plant invasions in fragmented urban and rural grasslands across continents. Landscape Ecol 23:1243–1256

    Google Scholar 

  • Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenisation? Front Ecol Environ 9(4):222–228

    Google Scholar 

  • Colding J (2011) The role of ecosystem services in contemporary planning. In: Niemelä J et al. (eds) Urban ecology: patterns, processes, and applications. Oxford University Press, pp 45–58.

  • Conservation of Agricultural Resources Act (43 of 1984). South Africa

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 61:335–380

    Google Scholar 

  • Cornwell WK, Schwilk DW, Ackerley DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471

    PubMed  Google Scholar 

  • Craul PJ (1985) A description of urban soils and their desired characteristics. J Arboric 11(11):330–339

    Google Scholar 

  • Dethier MN, Graham ES, Cohen S, Tear LM (1993) Visual versus random-point percent cover estimations: ‘objective’ is not always better. Mar Ecol Prog Ser 96:93–100

    Google Scholar 

  • Deutschewitz K, Lausch A, Kűhn I, Klotz S (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Global Ecol Biogeogr 12:299–311

    Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2012) InfoStat versión 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar. Accessed 24 November 2012.

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11):646–655

    Google Scholar 

  • Du Toit MJ (2009) Grassland ecology along an urban–rural gradient using GIS techniques in Klerksdorp, South Africa. Dissertation, North West University. doi: http://hdl.handle.net/10394/4197.

  • Du Toit MJ, Cilliers SS (2011) Aspects influencing the selection of representative urbanisation measures to quantify urban–rural gradients. Landscape Ecol 26:169–181

    Google Scholar 

  • Dukes JS (2001) Biodiversity and invasibility in grassland microcosms. Oecologia 126:63–568

    Google Scholar 

  • Duncan RP, Clemants SE, Corlett RT, Hahs AK, McCarthy MA, McDonnell MJ, Schwartz MW, Thompson K, Vesk PA, Williams NSG (2011) Plant traits and extinctions in urban areas: a meta-analysis of 11 cities. Global Ecol Biogeogr 20:509–519

    Google Scholar 

  • Elton CS (1958) The ecology of invasions of animals and plants. Chapman Hall, London

    Google Scholar 

  • Everitt BS, Dunn G (1992) Applied multivariate data analysis. Oxford University Press, New York

    Google Scholar 

  • Fairbanks DHK, Thompson MW, Vink DE, Newby TS, Van Den Berg HM, Everard DM (2000) The South African land-cover characteristics database: a synopsis of the landscape. S Afr J Sci 96:69–82

    Google Scholar 

  • Fischer LK, Von der Lippe M, Kowarik I (2013) Urban land use types contribute to grassland conservation: the example of Berlin. Urban For Urban Gree 12(3):263–272

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Fox DM, Bryan RB (2000) The relationship of soil loss by interrill erosion to slope gradient. Catena 38(3):211–222

    Google Scholar 

  • Freudenberger D, Noble J (1997) The nature of landscape dysfunction in rangelands. In: Ludwig JA et al (eds) Landscape ecology, function & management: principles from Australia’s rangelands. CSIRO, Collingwood, pp 49–62

    Google Scholar 

  • Fynn RWS, Morris CD, Edwards TJ (2004) Effects of burning and mowing on grass and forb diversity in a long-term grassland experiment. Appl Veg Sci 7:1–10

    Google Scholar 

  • Gilbert OL (1989) The ecology of urban habitats. Chapman and Hall, London

  • Gill SE, Handley AR, Ennos AR, Pauleit S (2007) Adapting cities for climate change: the role of green infrastructure. Built Environ 33(1):115–133

    Google Scholar 

  • Grobler CH, Bredenkamp GJ, Brown LR (2006) Primary grassland communities of urban open spaces in Gauteng, South Africa. SAJB 72:367–377

  • Hahs AK, McDonnell MJ (2006) Selecting independent measures to quantify Melbourne’s urban–rural gradient. Landscape Urban Plan 78:435–448

    Google Scholar 

  • Hanley TA (1978) A comparison of the line-interception and quadrat estimation methods of determining shrub canopy coverage. J Range Manage 31(1):60–62

    Google Scholar 

  • Hansen MJ, Franklin SE, Woudsma CG, Peterson M (2001) Caribou habitat mapping and fragmentation analysis using Landsat MSS, TM, and GIS data in the North Columbia Mountains, British Columbia, Canada. Remote Sens Environ 77:50–65

    Google Scholar 

  • Hargis DD, Bissonette JA, David JL (1998) The behaviour of landscape metrics commonly used in the study of habitat fragmentation. Landscape Ecol 13:167–186

    Google Scholar 

  • Henderson L (2001) Alien weeds and invasive plants. Plant protection research institute handbook No. 12. Agricultural Research Council, Pretoria

    Google Scholar 

  • Herold M, Couclelis H, Clarke KC (2005) The role of spatial metrics in the analysis and modelling of urban land use change. Comput Environ Urban Syst 29:369–399

    Google Scholar 

  • Hunt SD, Guzy JC, Price SJ, Halstead BJ, Eskew EA, Dorcas ME (2013) Responses of riparian reptile communities to damming and urbanisation. Biol Cons 157:277–284

    Google Scholar 

  • Kent M (2012) Vegetation description and data analysis. Wiley & Sons, Ltd.

  • Kleyer M (1999) Distribution of plant functional types along gradients of disturbance intensity and resource supply in an agricultural landscape. J Veg Sci 10(5):697–708

    Google Scholar 

  • Klimek S (2006) Effects of local and landscape factors on grassland plant diversity. Dissertation, Georg-August-Universität.

  • Klotz S (1990) Species/area and species/inhabitants relations in European cities. In: Sukopp H et al., (eds) Urban ecology: plants and plant communities in urban environments. SPC Academic Publishing, The Hague, pp 99–103.

  • Knapp S, Wittig R (2012) An analysis of temporal homogenisation and differentiation in central European village floras. Basic Applied Ecol 13:319–327

    Google Scholar 

  • Knapp S, Kűhn I, Wittig R, Ozinga WA, Poschlod P, Klotz S (2008) Urbanisation causes shifts in species’ trait state frequencies. Preslia 80:375–388

    Google Scholar 

  • Knapp S, Kűhn I, Bakker JP, Kleyer M, Klotz S, Ozinga WA, Poschlod P, Thompson K, Thuiller W, Römermann C (2009) How species traits and affinity to urban land use control large-scale species frequency. Divers Distr 15:533–546

    Google Scholar 

  • Kowarik I (1995) On the role of alien species in urban flora and vegetation. In: Pyšek P et al (eds) Plant invasions - general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 15–38

    Google Scholar 

  • Kűhn I, Klotz S (2006) Urbanisation and homogenisation – Comparing the floras of urban and rural areas in Germany. Biol Cons 127:292–300

    Google Scholar 

  • Laliberté E (2011) Land-use intensification in grazing systems: plant trait responses and feedbacks to ecosystem functioning and resilience. Dissertation, University of Canterbury.

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1):299–305

    PubMed  Google Scholar 

  • Lambdon PW, Lloret F, Hulme PE (2008) Do non-native species invasions lead to biotic homogenisation at small scales? The similarity and functional diversity of habitats compared for alien and native components of Mediterranean floras. Divers Distr 14:774–785

    Google Scholar 

  • Lepš J, De Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501

    Google Scholar 

  • Lockaby BG, Zhang D, McDaniel J, Tian H, Pan S (2005) Interdisciplinary research at the urban–rural interface: the WestGa project. Urban Ecosyst 8:7–21

    Google Scholar 

  • Luck M, Wu J (2002) A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecol 17:327–339

    Google Scholar 

  • Ludwig JA, Tongway DJ (1997) A landscape approach to rangeland ecology. In: Ludwig JA et al (eds) Landscape ecology, function & management: principles from Australia’s rangelands. CSIRO, Collingwood, pp 4–7

    Google Scholar 

  • Ludwig JA, Tongway DJ, Marsden SG (1999a) Stripes, strands or stipples: modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia. Catena 37:257–273

    Google Scholar 

  • Ludwig JA, Wiens JA, Tongway DJ (1999b) A scaling rule for landscape patches and how it applies to conserving soil resources in savannas. Ecosystems 3:84–97

    Google Scholar 

  • Ludwig JA, Eager RW, Bastin GN, Chewings VH, Liedloff AC (2001) A leakiness index for assessing landscape function using remote sensing. Landscape Ecol 17:157–171

    Google Scholar 

  • Ludwig JA, Wilcox BP, Breshears DD, Tongway DJ, Imeson AC (2005) Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86(2):288–297

    Google Scholar 

  • Marañón-Jiménez S, Castro J (2013) Effect of decomposing post-fire coarse woody debris on soil fertility and nutrient availability in a Mediterranean ecosystem. Biogeochemistry 112:519–535

    Google Scholar 

  • Mason NWH, MacGilivray K, Steel JB, Wilson JB (2003) An index of functional diversity. J Veg Sci 14:571–578

    Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118

    Google Scholar 

  • Mayfield MM, Boni MF, Daily GC, Ackerly D (2005) Species and functional diversity of native and human-dominated plant communities. Ecology 86(9):2365–2372

    Google Scholar 

  • McAlpine CA, Eyre TJ (2002) Testing landscape metrics as indicators of habitat loss and fragmentation in continuous eucalypt forests (Queensland, Australia). Landscape Ecol 17:711–728

    Google Scholar 

  • McDonnell MJ, Pickett STA (1990) Ecosystem structure and function along urban–rural gradients: an unexploited opportunity for ecology. Ecology 71(4):1232–1237

    Google Scholar 

  • McDonnell MJ, Pickett STA, Groffman P, Bohlen P, Pouyat RV, Zipperer WC, Parmelee RW, Carreiro MM, Medley K (1997) Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst 1:21–36

    Google Scholar 

  • McIntyre S, Lavorel S, Tremont RM (1995) Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J Ecol 83(1):31–44

    Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenisation: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14(11):450–453

    PubMed  Google Scholar 

  • Mell IC (2008) Green infrastructure: concepts and planning. FORUM Ejournal 8:69–80. Newcastle University, Newcastle.

  • Mouillot D, Villéger S, Sherer-Lorenzo M, Mason NWH (2011) Functional structure of biological communities predicts multifunctionality. PLoS One 6(3):1–9

    Google Scholar 

  • Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria

    Google Scholar 

  • National Environmental Management: Biodiversity Act (10 of 2004). South Africa

  • Niemelä J (1999a) Is there a need for a theory of urban ecology? Urban Ecosyst 3:57–65

    Google Scholar 

  • Niemelä J (1999b) Ecology and urban planning. Biodivers Conserv 8:119–131

    Google Scholar 

  • NWDACE (North West Department of Agriculture, Conservation and Environment) (2008) North west province environment outlook. North West Department of Agriculture, Conservation and Environment, Mmbatho

    Google Scholar 

  • NWDACERD (North West Department of Agriculture, Conservation, Environment and Rural Development) (2009) North west provincial biodiversity conservation assessment technical report, version 1.2., march 2009. North West Department of Agriculture, Conservation, Environment and Rural Development, Mmbatho

    Google Scholar 

  • O’Connor TG, Bredenkamp GJ (1997) Grassland. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of southern Africa. Cambridge University Press, Cambridge, pp 215–257

    Google Scholar 

  • Pakeman RJ (2011) Functional diversity indices reveal the impacts of land use intensification on plant community assembly. J Ecol 99:1143–1151

    Google Scholar 

  • Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biophysical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front Ecol Environ 9(1):27–36

    Google Scholar 

  • Pellissier V, Rozé F, Aguajda R, Quénol H, Clergeau P (2008) Relationship between soil seed bank, vegetation and soil fertility along an urbanisation gradient. Appl Veg Sci 11:325–334

    Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758

    PubMed  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Mashall V, McGrath BP, Nilon CH, Pouyat RV, Szlavecz K, Troy A, Page W (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manage 92:331–362

    CAS  PubMed  Google Scholar 

  • Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Google Scholar 

  • Pla L, Casanoves F, Di Rienzo JA, Fernandez F, Finegan B (2008) Confidence intervals for functional diversity indices considering species abundance. XXIV International Biometric Conference, Dublin.

  • Pokorny M, Sheley R, Engel R (2005) Plant functional group diversity as a mechanism for invasion resistance. Restor Ecol 13(3):448–459

  • PRIMER-E (2012) PRIMER software v6. PRIMER-E ltd.

  • Pyšek P (1998) Alien and native species in central European urban floras: a quantitative comparison. J Biogeogr 25(1):155–163

    Google Scholar 

  • Pyšek P & Pyšek A (1990) Comparison of vegetation and flora of West Bohemian towns. In: Sukopp H et al., (eds) Urban ecology: plants and plant communities in urban environments. SPC Academic Publishing, The Hague, pp 105–112.

  • Pyšek P, Prach K, Šmilauer P (1995) Relating invasion success to plant traits: an analysis of the Czech alien flora. In: Pyšek P et al (eds) Plant invasions - general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 39–60

    Google Scholar 

  • Raunkiaer C (1937) Plant life forms. Claredon Press, Oxford

  • Rebele F (1994) Urban ecology and special features of urban ecosystems. Global Ecol Biogeogr 4(6):173–187

    Google Scholar 

  • Rezaei SA, Arzani H, Tongway DJ (2006) Assessing rangeland capability in Iran using landscape function indices based on soil surface attributes. J Arid Environ 65:460–473

    Google Scholar 

  • Robinson GR, Holt RD, Gaines MS, Hamburg SP, Johnson ML, Fitch HS, Martinko EA (1992) Diverse and contrasting effects of habitat fragmentation. Science 257(5069):524–526

    CAS  PubMed  Google Scholar 

  • Romesburg HC (1984) Cluster analysis for researchers. Lulu Press, North Carolina

    Google Scholar 

  • Sandström UG (2002) Green infrastructure planning in Sweden. Plann Pract Res 17(4):373–385

    Google Scholar 

  • Sauerwein M (2011) Urban soils – characterisation, pollution, and relevance in urban ecosystems. In Niemelä J et al. (eds) Urban ecology: patterns, processes, and applications. Oxford University Press, pp 45–58.

  • Saura S, Martinez-Millán J (2001) Sensitivity of landscape pattern metrics to map spatial extent. Photogramm Eng Remote Sens 67(9):1027–1036

    Google Scholar 

  • Savard J-P L, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Lanscape Urban Plan 48:131–142

    Google Scholar 

  • Schäffler A, Swilling M (2013) Valuing green infrastructure in an urban environment under pressure – the Johannesburg case. Ecol Econ 86:246–257

    Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77(2):364–374

    Google Scholar 

  • Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices. Ecol Monogr 80(3):469–484

    Google Scholar 

  • Smart SM, Thompson K, Marrs RH, Le Duc MG, Maskell LC, Firbank LG (2006) Biotoc homogenisation and changes in species diversity across human-modified ecosystems. P Roy Soc Lond B Bio 273:2659–2665

    Google Scholar 

  • Soil Classification Working Group (1991) Soil classification: a taxonomic system for South Africa. Memoirs on the Agricultural natural resources of South Africa No.15. Department of Agricultural Development, Pretoria

    Google Scholar 

  • CNES (Centre National d’Etudes Spatiales). (2007) SPOT. http://www.geoimage.com.au/ geoweb/spot/spot_overview.htm. Accessed 20 February 2012.

  • Stadler J, Trefflich A, Klotz S, Brandl R (2000) Exotic plant species invade diversity hotspots: the alien flora of Northwestern Kenya. Ecography 23(2):169–176

    Google Scholar 

  • Stats SA (Statistics South Africa) (2006) Migration and urbanisation in South Africa. Statistics South Africa, Pretoria

    Google Scholar 

  • StatSoft Inc (2012a) STATISTICA (data analysis software system). Version 11. StatSoft Inc, Tulsa.

  • StatSoft I (2012b) STATISTICA 11: electronic manual. StatSoft Inc, Tulsa

    Google Scholar 

  • Steyn HS (2009) Manual: Effect size indices and practical significance. North-West University, Potchefstroom. http://www.nwu.ac.za/p-statcs/index.html. Accessed 27 May 2013.

  • Sudnik-Wójcikowska B, Galera H (2005) Floristic differences in some anthropogenic habitats in Warsaw. Ann Bot Fenn 42:185–193

    Google Scholar 

  • ESRI (Environmental Systems Research Institute). (2010) ArcView 10. www.esri.com. Redlands, California.

  • Thompson K, McCarthy MA (2008) Traits of British alien and native plants. J Ecol 96:853–859

    Google Scholar 

  • Thuiller W, Midgley GF, Rouget M, Cowling RM (2006) Predicting patterns of plant species richness in megadiverse South Africa. Ecography 29:733–744

    Google Scholar 

  • Tongway DJ, Hindley N (2004) Landscape function analysis: procedures for monitoring and assessing landscapes. With special reference to minesites and rangelands. CSIRO Sustainable Ecosystems, Canberra

    Google Scholar 

  • Tongway DJ, Hodgkinson KC (1992) The effects of fire on the soil in degraded semi-arid woodland. III. Nutrient pool sizes, biological activity and herbage response. Aust J Soil Res 30(1):17–26

    Google Scholar 

  • Tscharntke T, Klein AM, Kreuss A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol Lett 8:857–874

    Google Scholar 

  • Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kaźmierczak A, Niemelä J, James P (2007) Promoting ecosystem and human health in urban areas using green infrastructure: a literature review. Lanscape Urban Plan 81:167–178

    Google Scholar 

  • Van der Walt L (2013) Landscape functionality and plant diversity of grassland fragments along an urban–rural gradient in the Tlokwe Municipal area, South Africa. Dissertation, North West University.

  • Van der Walt L, Cilliers SS, Kellner K, Tongway D, Van Rensburg L (2012) Landscape functionality of plant communities in the Impala Platinum mining area, Rustenburg. J Environ Manage 113:103–116

    PubMed  Google Scholar 

  • Van der Walt L, Cilliers SS, Kellner K & Tongway D (2013) To what extent does urbanisation affect fragmented grassland functioning? J Environ Manage

  • Vásquez-Méndez R, Ventura-Ramos E, Oleschko K, Hernández-Sandoval L, Parrot J-F, Nearing MA (2010) Soil erosion and runoff in different vegetation patches from semi-arid Central Mexico. Catena 80:162–169

    Google Scholar 

  • Villéger S, Mason N, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8):2290–2301

    PubMed  Google Scholar 

  • Villéger S, Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl 20(6):1512–1522

    PubMed  Google Scholar 

  • Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2(2):95–113

    Google Scholar 

  • Wania A, Kűhn I, Klotz S (2006) Plant richness patterns in agricultural and urban landscapes in Central Germany – spatial gradients of species richness. Lanscape Urban Plan 75:97–110

    Google Scholar 

  • Warner RM (2008) Applied statistics: from bivariate through multivariate techniques. Sage Publications, Los Angeles

    Google Scholar 

  • Weber T, Sloan A, Wolf J (2006) Maryland’s green infrastructure assessment: development of a comprehensive approach to land conservation. Lanscape Urban Plan 77:94–110

    Google Scholar 

  • Williams NSG, McDonnell MJ, Seager EJ (2005a) Factors influencing the loss of an endangered ecosystem in an urbanising landscape: a case study of native grasslands from Melbourne, Australia. Landscape Urban Plan 71:35–49

    Google Scholar 

  • Williams NSG, Morgan JW, McDonnell MJ, McCarthy MA (2005b) Plant traits and local extinctions in natural grasslands along an urban–rural gradient. J Ecol 93:1203–1213

    Google Scholar 

  • Williams NSG, Schwartz MW, Vesk PA, McCarthy MA, Hahs AK, Clemants SE, Corlett RT, Duncan RP, Norton BA, Thompson K, McDonnell MJ (2009) A conceptual framework, for predicting the effects of urban environments on floras. J Ecol 97:4-9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. van der Walt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Walt, L., Cilliers, S.S., Du Toit, M.J. et al. Conservation of fragmented grasslands as part of the urban green infrastructure: how important are species diversity, functional diversity and landscape functionality?. Urban Ecosyst 18, 87–113 (2015). https://doi.org/10.1007/s11252-014-0393-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-014-0393-9

Keywords

Navigation