Skip to main content

Advertisement

Log in

Edaphically distinct habitats shape the crown architecture of Lychnophora ericoides Mart. (Asteraceae) on tropical mountaintops

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Different architectural arrangements may represent contrasting morphological solutions to different environmental pressures. This work aims to elucidate whether the crown architecture of Lychnophora ericoides (Asteraceae) modifies in response to harsh soil conditions (nutrient poor and heavy metal rich) and how its crown architecture affects its reproduction. One hundred and sixty L. ericoides individuals were randomly sampled from eight populations, four on quartzite and four on iron canga rocky complexes in the Iron Quadrangle, southeastern Brazil. We performed soil analyses to characterize edaphic differences and used eight morphometric parameters to describe the crown architecture of the plants. We calculated the population density and reproductive potential to verify the relationship between habitat, architecture, and fitness. Canga soils were more nutrient rich than quartzite soils and plants were architecturally distinct in each habitat. Plants established on canga soils were shorter, had a thinner main branch, and a smaller leaf than those established on quartzite soils. Moreover, plants on canga soils had a larger crown diameter and a greater number of branches and inflorescences. There was no difference in population density but the reproductive potential varied among populations and habitats. The crown architecture of L. ericoides closely relates to reproductive potential and may favor the reproduction of more architectonically complex plants, regardless of habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida FFM (1977) O Cráton do São Francisco. Rev Bras Geociências 7:349–364

    Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Goncalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. doi:10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Arya SK, Roy BK (2011) Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.). J Environ Biol 32:707–711

    CAS  PubMed  Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407. doi:10.1093/aob/mcl260

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J Exp Bot 51:945–953. doi:10.1093/jexbot/51.346.945

    CAS  PubMed  Google Scholar 

  • Bothe H (2011) Plants in heavy metal soils. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Springer, Berlin, pp 35–57

    Chapter  Google Scholar 

  • Brazil (2008) Instrução normativa Ministério do Meio Ambiente Nº 6, de 23 de setembro. Dispõe sobre a lista de espécies da flora brasileira ameaçada de extinção. http://www.mma.gov.br/estruturas/179/_arquivos/179_05122008033615.pdf. Accessed 19 May 2015

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12. doi:10.1155/2014/752708

    Article  Google Scholar 

  • Collevatti RG, Rabelo SG, Vieira RF (2009) Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species. Ann Bot 104:655–664. doi:10.1093/aob/mcp157

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox MS, Bell PF, Kovar JL (1996) Differential tolerance of canola to arsenic when grown hydroponically or in soil. J Plant Nutr 19:1599–1610. doi:10.1080/01904169609365224

    Article  CAS  Google Scholar 

  • Crawley MJ (1997) Life history and environment. In: Crawley MJ (ed) Plant ecology, 2nd edn. Blackwell Science, Oxford, pp 73–131

    Google Scholar 

  • deDorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J Plant Nutr 28:1–20. doi:10.1081/PLN-200042144

    Article  CAS  Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A (2005) A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 278:119–134. doi:10.1007/s11104-005-7577-2

    Article  CAS  Google Scholar 

  • EMBRAPA (1997) Manual de métodos de análises de solo, 2nd edn. EMBRAPA, Rio de Janeiro

    Google Scholar 

  • Eränen JK, Nilsen J, Yverev VE, Kozlov MV (2009) Mountain birch under multiple stressors—heavy metal resistant populations co-resistant to biotic stress but maladapted to abiotic stress. J Evol Biol 22:840–851. doi:10.1111/j.1420-9101.2009.01684.x

    Article  PubMed  Google Scholar 

  • Farnsworth KD, Niklas KJ (1995) Theories of optimization, form and function in branching architecture in plants. Funct Ecol 9:355–363. doi:10.2307/2389997

    Article  Google Scholar 

  • Ghani A (2010) Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea mays L.). Iran J Toxicol 3:325–334

    Google Scholar 

  • Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region, eastern Brazil. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centers of plant diversity: a guide and strategy for their conservation. The Americas, Cambridge, pp 397–404

    Google Scholar 

  • Housman DC, Price MV, Redak RA (2002) Architecture of coastal and desert Encelia farinosa (Asteraceae): consequences of plastic and heritable variation in leaf characters. Am J Bot 89:1303–1310. doi:10.3732/ajb.89.8.1303

    Article  PubMed  Google Scholar 

  • Hussain A, Abbas N, Arshad F, Akram M, Khan Z, Ahmad K, Mansha M, Mirzaei F (2013) Effects of diverse doses of Lead (Pb) on different growth attributes of Zea mays L. Agricultural Sciences 4:262–265. doi:10.4236/as.2013.45037

    Article  CAS  Google Scholar 

  • Jacobi CM, Carmo FF (2012) Diversidade florística nas cangas do Quadrilátero Ferrífero. Código Editora, Belo Horizonte

    Google Scholar 

  • Jiang W, Liu D, Hou W (2001) Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic. Bioresour Technol 76:9–13. doi:10.1016/S0960-8524(00)00086-9

    Article  CAS  PubMed  Google Scholar 

  • Kruckeberg AR (2002) Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press, Seatle

    Google Scholar 

  • Larcher W (1994) Ökophysiologie der pflanzen. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Mansanares ME, Forni-Martins ER, Semir J (2002) Chromosome numbers in the genus Lychnophora Mart. (Lychnophorinae, Vernonieae, Asteraceae). Caryologia 55:367–374. doi:10.1080/00087114.2002.10797889

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. doi:10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  • Nessim R (2008) Influência das condições edáficas sobre a arquitetura aérea de Lychnophora salicifolia Mart. Dissertation, Universidade Federal de Minas Gerais

  • Niklas KJ (1986) Evolution of plant shape: design constraints. Trends Ecol Evol 1:67–72. doi:10.1016/0169-5347(86)90020-0

    Article  CAS  PubMed  Google Scholar 

  • O’Dell RE, Rajakaruna N (2011) Intraspecific variation, adaptation, and evolution. In: Harrison SP, Rajakaruna N (eds) Serpentine: evolution and ecology in a model system. University of California Press, Berkeley, pp 97–137

    Google Scholar 

  • Panda SK, Patra HK (2000) Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings. Proc Natl Aced Sci India B 70:75–80

    CAS  Google Scholar 

  • Rajakaruna N (2004) The edaphic factor in the origin of species. Int Geol Rev 46:471–478. doi:10.2747/0020-6814.46.5.471

    Article  Google Scholar 

  • Rajakaruna N, Boyd RS (2008) The edaphic factor. In: Jorgensen SE, Fath B (eds) The encyclopedia of ecology, 2nd edn. Elsevier, Oxford, pp 1201–1207

    Chapter  Google Scholar 

  • Rajakaruna N, Whitton J (2004) Trends in the evolution of edaphic specialists with an example of parallel evolution in the Lasthenia californica complex. In: Cronk QCB, Whitton J, Ree R, Taylor IEP (eds) Plant adaptation: Molecular Biology and Ecology. NRC Research Press, Ottowa, pp 103–110

    Google Scholar 

  • Rapini A, Ribeiro PL, Pirani JB (2008) A flora dos campos rupestres da Cadeia do Espinhaço. Megadiversidade 4:16–24

    Google Scholar 

  • Raven PH, Evert RR, Eichhorn SE (2007) Biologia vegetal. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  • Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3:846–851. doi:10.1093/embo-reports/kvf177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro SP, Londe V, Bueno AP et al (2016) Plant defense against leaf herbivory based on metal accumulation: examples from a tropical high altitude ecosystem. Plant Species Biol. doi:10.1111/1442-1984.12136

    Google Scholar 

  • Schulze ED, Beck E, Mèuller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Semir J, Rezende AR, Monge M, Lopes NP (2011) As arnicas endêmicas das serras do Brasil: uma visão sobre a biologia e a química das espécies de Lychnophora (Asteraceae). Editora UFOP, Ouro Preto

    Google Scholar 

  • Sharma DC, Sharma CP (1993) Chromium uptake and its effects on growth and biological yield of wheat. Cereal Res Commun 21:317–322. http://www.jstor.org/stable/23783985

  • Shekar CHC, Sammaiah D, Shasthree T, Reddy KJ (2011) Effect of mercury on tomato growth and yield attributes. Int J Pharma BioSci 2:358–364

    CAS  Google Scholar 

  • Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278:341–349. doi:10.1007/s11104-005-8815-3

    Article  CAS  Google Scholar 

  • Shenker M, Plessner OE, Tel-Or E (2004) Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J Plant Physiol 161:197–202. doi:10.1078/0176-1617-00931

    Article  CAS  PubMed  Google Scholar 

  • Silva DB, Turatti ICC, Gouveia DR, Ernst M, Teixeira SP, Lopes NP (2014) Mass spectrometry of flavonoid Vicenin-2, based sunlight barriers in Lychnophora species. Nat Sci Rep 4:4309. doi:10.1038/srep04309

    Article  Google Scholar 

  • Silveira FAO, Negreiros D, Barbosa NPU et al (2015a) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil. doi:10.1007/s11104-015-2637-8

    Google Scholar 

  • Silveira FAO, Santos JC, Franceschinelli EV, Morellato LPC, Fernandes GW (2015b) Costs and benefits of reproducing under unfavorable conditions: an integrated view of ecological and physiological constraints in a cerrado shrub. Plant Ecol 216:963–974. doi:10.1007/s11258-015-0482-8

    Article  Google Scholar 

  • Simon MF, Grether R, Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci USA 106:20359–20364. doi:10.1073/pnas.0903410106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha S, Guptha M, Chandra P (1997) Oxidative stress induced by iron in Hydrilla verticillata (i.f) Royle: response of antioxidants. Ecotoxicol Environ Saf 38:286–291. doi:10.1006/eesa.1997.1598

    Article  CAS  PubMed  Google Scholar 

  • Troeh FR, Thompson LM (2007) Solos e fertilidade do solo. Blackwell, Oxford

    Google Scholar 

  • Wang M, Zou J, Duan X, Jiang X, Liu D (2007) Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresour Technol 98:82–88. doi:10.1016/j.biortech.2005.11.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Capes Foundation, Ministry of Education of Brazil, for awarding the Master’s degree scholarship to the first author; the Department of Transport (UFOP) for logistical support in the field; the Forest State Institute of Minas Gerais (IEF) for allowing this study at the Itacolomi, Ouro Branco, and Rola-Moça State Parks as well as at the Moeda Natural Monument; the Samarco mining and the National Steel Company for allowing this study on their private land; Dr. Maria Cristina Teixeira Braga Messias for providing the results of ten soil analyses from the Samarco mining sampling area; and Núbia Ribeiro Campos for illustrating the architectural morphotypes of the plants and Carolina Souza Sarno for creating the sampling map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amauri Pires Bueno.

Additional information

Communicated by Kun-Fang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, A.P., Ribeiro, S.P., Antunes, D.S. et al. Edaphically distinct habitats shape the crown architecture of Lychnophora ericoides Mart. (Asteraceae) on tropical mountaintops. Plant Ecol 218, 773–784 (2017). https://doi.org/10.1007/s11258-017-0728-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0728-8

Keywords

Navigation