Skip to main content
Log in

Ecophysiology of frailejones (Espeletia spp.), and its contribution to the hydrological functioning of páramo ecosystems

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Páramos are high elevation tropical ecosystems in northern Andes, with large water yield and water regulation. One of the main and representative species growing in these páramos is the genus Espeletia, known as frailejones. There is a lack of knowledge of Espeletia ecophysiology, maybe due to its unusual anatomical modifications and the specific climatic conditions of these ecosystems. Therefore, it is important to determine the relationships between the anatomical modifications of Espeletia, its physiological functioning, and its contribution to the ecohydrologic functioning of páramos. Consequently, we studied the physiology of frailejones in two Colombian páramos, focused on the identification of conductive tissues inside the stems, calculated the age, and measured sapflow, using the heat ratio method. Results show that Espeletia spp. have a central pith that increases with height, as the size of secondary xylem decreases. Frailejones respond quickly to the changing conditions of weather factors controlling transpiration such as solar radiation, temperature, and fog presence. However, although environmental factors favor transpiration, the sapflow tends to decrease—a particular behavior of the Espeletia transpiration processes—since this occurs chaotically over time, including sapflow at night. The transformation of sapflow velocity to depth of water in a basin shows that the water lost through their transpiration is very low, which contributes to the high runoff ratio of páramo ecosystems. For the first time, we determine by radiocarbon the real ages of three E. hartwegiana, and their mean growth rates to range between 3.8 and 6.9 cm year−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson EP, Marengo JA, Villalba R, Hallow SRP, Yung BE, Cordero D, Gast F, Jaimes E, Ruiz D (2012) Consecuencias del cambio climático en los ecosistemas y servicios de los ecosistemas en los Andes tropicales. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) Cambio climático y biodiversidad en los ándes tropicales. Instituto Interamericano para la Investigación del Cambio Global (IAI)-Comité Científico sobre Problemas del Medioambiente (SCOPE), París, Francia, pp 1–22

    Google Scholar 

  • Azocar A, Rada F (1993) Ecofisiología de plantas de alta montaña andina. In: Azócar A (ed) Respuestas ecofisiológicas de plantas de ecosistemas tropicales. Universidad de Los Andes, Mérida, pp 82–110

    Google Scholar 

  • Azócar A, Rada F (2007) Ecofisiología de las plantas de páramo. Litorama, Caracas

    Google Scholar 

  • Becker P (1998) Limitations of a compensation heat pulse velocity system at low sap flow: implications for measurements at night and in shaded trees. Tree Physiol 18:177–184

    Article  PubMed  Google Scholar 

  • Benyon R (1999) Nighttime water use in an irrigated Eucalyptus grandis plantation. Tree Physiol 19:853–859. https://doi.org/10.1093/treephys/19.13.853

    Article  CAS  PubMed  Google Scholar 

  • Bleby TM, Burgess SSO, Adams MA (2004) A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct Plant Biol 31:645–658

    Article  Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AAH, Bleby TM (2001) An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol 21:589–598. https://doi.org/10.1093/treephys/21.9.589

    Article  CAS  PubMed  Google Scholar 

  • Buytaert W, Sevin J, Cuesta F (2014) Cambio climático: la nueva amenaza para los páramos. In: Cuesta F, Sevink J, Llambí LD, De Bièvre B, Posner J (eds) Avances en investigación para la conservación de los páramos andinos. CONDESAN, Lima

    Google Scholar 

  • Cavieres LA, Rada F, Azócar A, García-Núñez C, Cabrera HM (2000) Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes. Acta Oecol 21:203–211. https://doi.org/10.1016/S1146-609X(00)01077-8

    Article  Google Scholar 

  • Cuatrecasas J (1968) Geo-ecology of the mountainous regions of the tropical Americas. Colloquium geographicum. Ferd. Dummiers Verlag, Bonn, pp 168–186

    Google Scholar 

  • del Valle JI, Guarín JR, Sierra CA (2014) Unambiguous and low-cost determination of growth rates and ages of tropical trees and palms. Radiocarbon 56:39–52. https://doi.org/10.2458/56.16486

    Article  Google Scholar 

  • DeMason DA (1983) The primary thickening meristem: definition and function in Monocotyledons. Am J Bot 70:955–962

    Article  Google Scholar 

  • García-Varela S, Rada F (2003) Freezing avoidance mechanisms in juveniles of giant rosette plants of the genus Espeletia. Acta Oecol 24:165–167. https://doi.org/10.1016/S1146-609X(03)00081-X

    Article  Google Scholar 

  • Gayon J (2000) History of the concept of allometry. Am Zool 40:748–758

    Google Scholar 

  • Goldstein G, Meinzer F, Rada F (1994) Environmental biology of a tropical treeline species, Polylepis sericea. In: Rundel PW, Meinzer F, Smith AP (eds) Tropical alpine environments: plant form and function. Cambridge University Press, Cambridge, pp 129–150

    Chapter  Google Scholar 

  • Goldstein G, Andrade JL, Meinzer FC, Holbrook NM, Cavelier J, Jackson P, Celis A (1998) Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ 21:397–406

    Article  Google Scholar 

  • Gonzáles R, Mason AC (2010) Colombia y el hemisferio frente al nuevo orden global. Ediciones Uninorte, Barranquilla, p 296

    Google Scholar 

  • Greenpeace Colombia (2009) Cambio climático: futuro negro para los páramos. Greenpeace, Bogotá

    Google Scholar 

  • Hofstede R, Segarra P, Mena P (eds) (2003) Los paramos del Mundo. Proyeto atlas mundial de los páramos. Global Peatland Initiative/NC-IUCN/EcoCiencia, Quito

    Google Scholar 

  • Hogg EH, Hurdle PA (1997) Sap flow in trembling aspen: implications for stomatal responses to vapour pressure deficit. Tree Physiol 17:501–509

    Article  PubMed  Google Scholar 

  • Huxley JS (1932) Problems of relative growth. Methuen Publishing Ltd, London

    Google Scholar 

  • IDEAM (Instituto de Hidrología Meteorología y Estudios Ambientales), 2017. Fuertes impactos del cambio climático en los páramos de Colombia. IDEAM, Bogotá, Colombia

  • Lambers H, Chapin S, Pons T (2008) Plant Physiolical. Ecology. https://doi.org/10.1007/978-0-387-78341-3

    Google Scholar 

  • Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) (1981) Physiological plant ecology I. Responses to the physical environment. Springer, New York

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Ecophysiology and stress physiology of functional groups, 3rd edn. Springer, New York

    Google Scholar 

  • Larsen TH, Brehm G, Navarrete H, Franco P, Gómez H, Mena JL, Morales V, Argollo J, Blacutt L, Canhos V (2012) Desplazamiento de los rangos de distribución y extinciones impulsadas por el cambio climático en los Andes tropicales: síntesis y orientaciones. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) Cambio climático y biodiversidad en los ándes tropicales. Instituto Interamericano para la Investigación del Cambio Global (IAI)-Comité Científico sobre Problemas del Medioambiente (SCOPE), París, pp 57–82

    Google Scholar 

  • Llambí LD, Ramírez L, Schwarzkopf T (2014) Patrones de distribución de plantas leñosas en el ecotono bosque-páramo de la Sierra Nevada de Mérida: ¿Qué nos sugieren sobre la dinámica del límite del bosque? In: Cuesta F, Sevink J, Llambí LD, De Bièvre B, Posner J (eds) Avances en investigación para la conservación de los páramos andinos. CONDESAN, Lima

    Google Scholar 

  • Lösch R, Schulze ED (1995) Internal coordination of plant responses to drought and evaporation demand. In: Shultze ED, Caldwell MM (eds) Ecophysiology and Photosynthesis. Springer, Berlin

    Google Scholar 

  • Meinzer F, Goldstein G (1985) Water and energy economy adaptations in Andean giant rosette plants. In: Givnish T (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 381–411

    Google Scholar 

  • Mora-Osejo LE (2001) Contribuciones al estudio comparativo de la conductancia y de la transpiración foliar de especies de plantas del páramo, Colecci{ó}n Jorge Alvarez Lleras. Editora Guadalupe Ltda, Bogotá

    Google Scholar 

  • Nobel PS, Goldstein G (1992) Desiccation and freezing phenomena for plants with large water capacitance—cacti and espeletias. In: Somero GN, Osmond CB, Bolis CL (eds) Water and life: comparative analysis of water relationships at the organismic, cellular, and molecular level. Springer, Berlin, pp 240–259. https://doi.org/10.1007/978-3-642-76682-4

    Chapter  Google Scholar 

  • Rada F, Goldsmith G, Azócar A, Meinzer F (1985) Freezing avoidance in Andean Giant rosette plants. Plant Cell Environ 8:501–507. https://doi.org/10.1111/j.1365-3040.1985.tb01685.x

    Article  Google Scholar 

  • Rada F, Azocar A, Gonzalez J, Briceño B (1998) Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes. Acta Oecol 19:73–79

    Article  Google Scholar 

  • Ramírez L, Llambí LD, Schwarzkop T, Gámez LE, Márquez NJ (2009) Vegetation structure along the forest—páramo transition belt in the Sierra Nevada de Mérida: implications for understanding treeline dynamics. Ecotrópicos 22:83–98

    Google Scholar 

  • Ramsay PM (2014) Giant rosette plant morphology as an indicator of recent fire history in Andean páramo grasslands. Ecol Indic 45:37–44. https://doi.org/10.1016/j.ecolind.2014.03.003

    Article  Google Scholar 

  • Ramsay PM, Oxley ERB (1997) The growth form composition of plant communities in the ecuadorian páramos. Plant Ecol 131:173–192. https://doi.org/10.1023/A:1009796224479

    Article  Google Scholar 

  • Reimer PJ, Brown TA, Reimer RW (2004) Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46:1299–1304. https://doi.org/10.2458/azu_js_rc.46.4183

    Article  CAS  Google Scholar 

  • Rock BN (1972) Vegetative anatomy of Espeletia (Compositae). University of Maryland, College Park

    Google Scholar 

  • Rojas-Zamora O, Insuasty-Torres J, Cárdenas C, Vargas O (2013) Reubicación de plantas de Espeletia grandiflora (Asteraceae) como estrategia para el enriquecimiento de áreas de páramo alteradas (PNN Chingaza, Colombia). Rev Biol Trop 61:363–376

    Article  PubMed  Google Scholar 

  • Roth I (1973) Anatomía de las hojas de plantas de los páramos venezolanos 2. Espeletia (Compositae). Acta Bot Venez 8:281–310

    Google Scholar 

  • Sarmiento L, Lambí LD, Escalona A, Márquez N (2003) Vegetation patterns, regeneration rates and divergence in an old field-succession of the high tropical Andes. Plant Ecol 166:63–74

    Article  Google Scholar 

  • Schulze ED, Cermak J, Matyssek R, Penka M, Zimmermannm R, Vasícek F, Gries W, Kucera J (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Piceu trees—a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66:475–483

    Article  Google Scholar 

  • Sklenář P (2006) Searching for altitudinal zonation: species distribution and vegetation composition in the superpáramo of Volcán Iliniza, Ecuador. Plant Ecol. 184:337–350. https://doi.org/10.1007/s11258-005-9077-0

    Article  Google Scholar 

  • Snyder KA, Richards JH, Donovan LA (2003) Night-time conductance in C3 and C4 species: do plants lose water at night? J Exp Bot 54:861–865. https://doi.org/10.1093/jxb/erg082

    Article  CAS  PubMed  Google Scholar 

  • Squeo FA, Rada F, Azocar A, Goldstein G (1991) Freezing tolerance and avoidance in high tropical Andean plants: is it equally represented in species with different plant height? Oecologia 86:378–382. https://doi.org/10.1007/BF00317604

    Article  CAS  PubMed  Google Scholar 

  • Steppe K, De Pauw DJW, Lemeur R, Vanrolleghem PA (2006) A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol 26:257–273. https://doi.org/10.1093/treephys/26.3.257

    Article  PubMed  Google Scholar 

  • Thompson DW (1917) On growth and form. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tobón C (2009) Los bosques andinos y el agua, Serie Investigación y Sistematización #4. Programa Regional ECOBONA-INTERCOOPERACIÓN, CONDESAN, Quito

  • Tobón C, Köhler L, Bruijnzeel LA, Frumau A, Schmid L (2004) Water dynamics of epi- phytic vegetation in a lower montane cloud forest: Fog interception, storage and its evaporation. In: Second international symposium: science for conserving and managing tropical montane cloud forests. Waimea, Hawai

  • Trautner JE (1962) La formación de zonas generatrices en plantas leñosas del limite selvático andino. Acta Cient Venez 13:126–134

    Google Scholar 

  • Weber H (1963) Über die vegetation der hochhandinen Páramos. Jahrbuch des Vereins zum Schutze der Alpenpflanzen und Tiere e.V. 28:2–16

    Google Scholar 

  • Young BE, Young KR, Josse C (2011) Vulnerability of tropical andean ecosystems to climate change. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), New York, pp 170–181

    Google Scholar 

  • Zapata M, del Valle JI, Orrego S (2001) Corrección por sesgos en modelos log-normales alométricos linealizados utilizados para la estimación de la biomasa aérea. In: Simposio internacional medición y monitoreo de la captura de carbono en ecosistemas forestales. Valdivia, p 20

  • Zweifel R, Häsler R (2001) Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiol 21:561–569. https://doi.org/10.1093/treephys/21.9.561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Colombian administrative department of the science, technology, and innovation COLCIENCIAS for funding the research project “Estudio ecohidrológicos de los páramos y los bosques alto andinos, naturales e intervenidos: Análisis de la vulnerabilidad y adaptabilidad al cambio climático” in the call for a bank of eligible projects in CT&i 569—2012, in which this study was framed. Also, the authors thank Colciencias for their support to finance the last year of PhD studies of Maria Fernanda Cárdenas through the scholarship of the call 727—2015 for national doctorands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Fernanda Cárdenas.

Additional information

Communicated by Zoltan Nagy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas, M.F., Tobón, C., Rock, B.N. et al. Ecophysiology of frailejones (Espeletia spp.), and its contribution to the hydrological functioning of páramo ecosystems. Plant Ecol 219, 185–198 (2018). https://doi.org/10.1007/s11258-017-0787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0787-x

Keywords

Navigation