Skip to main content
Log in

A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Surface comparison and matching is a challenging problem in computer vision. While elastic Riemannian metrics provide meaningful shape distances and point correspondences via the geodesic boundary value problem, solving this problem numerically tends to be difficult. Square root normal fields considerably simplify the computation of certain distances between parametrized surfaces. Yet they leave open the issue of finding optimal reparametrizations, which induce corresponding distances between unparametrized surfaces. This issue has concentrated much effort in recent years and led to the development of several numerical frameworks. In this paper, we take an alternative approach which bypasses the direct estimation of reparametrizations: we relax the geodesic boundary constraint using an auxiliary parametrization-blind varifold fidelity metric. This reformulation has several notable benefits. By avoiding altogether the need for reparametrizations, it provides the flexibility to deal with simplicial meshes of arbitrary topologies and sampling patterns. Moreover, the problem lends itself to a coarse-to-fine multi-resolution implementation, which makes the algorithm scalable to large meshes. Furthermore, this approach extends readily to higher-order feature maps such as square root curvature fields and is also able to include surface textures in the matching problem. We demonstrate these advantages on several examples, synthetic and real.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. https://github.com/SRNFmatch/SRNFmatch_code

  2. https://github.com/SRNFmatch/SRNFmatch_code

References

  • Abe, K., & Erbacher, J. (1975). Isometric immersions with the same gauss map. Mathematische Annalen, 215(3), 197–201.

    Article  MathSciNet  MATH  Google Scholar 

  • Almgren, F., (1966). Plateau’s problem: An invitation to varifold Geometry. Student Mathematical Library

  • Arnaudon, M., & Nielsen, F. (2013). On approximating the Riemannian 1-center. Computational Geometry, 46(1), 93–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer, M., Harms, P., & Michor, P. W. (2011). Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 3(4), 389–438.

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer, M., Harms, P., & Michor, P. W. (2012). Almost local metrics on shape space of hypersurfaces in n-space. SIAM Journal of Imaging Sciences, 5(1), 244–310.

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer, M., Bruveris, M., & Michor, P. W. (2014). Overview of the geometries of shape spaces and diffeomorphism groups. Journal of Mathematical Imaging and Vision, 50(1–2), 60–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer, M., Bruveris, M., & Michor, P. W. (2016). Why use Sobolev metrics on the space of curves. Riemannian computing in computer vision (pp. 233–255). Berlin: Springer.

    Chapter  Google Scholar 

  • Bauer, M., Bruveris, M., Charon, N., & Møller-Andersen, J. (2017). Varifold-based matching of curves via Sobolev-type Riemannian metrics. Graphs in biomedical image analysis, computational anatomy and imaging genetics (pp. 152–163). Cham: Springer.

    Chapter  Google Scholar 

  • Bauer, M., Bruveris, M., Charon, N., & Møller-Andersen, J. (2019a). A relaxed approach for curve matching with elastic metrics. ESAIM: Control, Optimisation and Calculus of Variations, 25, 72.

    MathSciNet  MATH  Google Scholar 

  • Bauer, M., Charon, N., & Harms, P. (2019b). Inexact elastic shape matching in the square root normal field framework. International Conference on Geometric Science of Information (pp. 13–20). Cham: Springer.

    Chapter  Google Scholar 

  • Bauer, M., Harms, P., & Michor, P. W. (2020). Fractional Sobolev metrics on spaces of immersions. Calculus of Variations and Partial Differential Equations, 59, 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  • Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157.

    Article  Google Scholar 

  • Bernal, J., Dogan, G., & Hagwood, C. R., (2016). Fast dynamic programming for elastic registration of curves. In: Computer Vision and Pattern Recognition (CVPR), (pp. 111–118).

  • Bhattacharya, A., & Bhattacharya, R. (2012). Nonparametric inference on manifolds: With applications to shape spaces (Vol. 2). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Bobenko, A., Schröder, P., Sullivan, J. M., & Ziegler, G. M. (2008). Discrete differential geometry (Vol. 38). Birkhäuser: Oberwolfach Semin.

    Book  MATH  Google Scholar 

  • Bruveris, M. (2015). Completeness properties of Sobolev metrics on the space of curves. Journal of Geometric Mechanics, 7(2), 125–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Bruveris, M., Michor, P. W., & Mumford, D. (2014). Geodesic completeness for Sobolev metrics on the space of immersed plane curves. In Forum of Mathematics, Sigma, (Vol. 2) Cambridge University Press.

  • Cao, Q., Thawait, G., Gang, G. J., Zbijewski, W., Reigel, T., Brown, T., et al. (2015). Characterization of 3D joint space morphology using an electrostatic model (with application to osteoarthritis). Physics in Medicine and Biology, 60(3), 947–60.

    Article  Google Scholar 

  • Cervera, V., Mascaró, F., & Michor, P. W. (1991). The action of the diffeomorphism group on the space of immersions. Differential Geometry and its Appliactions, 1(4), 391–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Charlier, B., Charon, N., & Trouvé, A. (2017). The fshape framework for the variability analysis of functional shapes. Foundations of Computational Mathematics, 17(2), 287–357.

    Article  MathSciNet  MATH  Google Scholar 

  • Charlier, B., Feydy, J., Glaunès, J., Collin, F. D., & Durif, G. (2020). Kernel operations on the GPU, with autodiff, without memory overflows. arXiv preprint arXiv:2004.11127

  • Charon, N., & Trouvé, A. (2013). The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM Journal of Imaging Sciences, 6(4), 2547–2580.

    Article  MathSciNet  MATH  Google Scholar 

  • Charon, N., & Trouvé, A. (2014). Functional currents: A new mathematical tool to model and analyse functional shapes. Journal of Mathematical Imaging and Vision, 48(3), 413–431.

    Article  MATH  Google Scholar 

  • Charon, N., Charlier, B., Glaunès, J., Gori, P., & Roussillon, P. (2020). Fidelity metrics between curves and surfaces: currents, varifolds, and normal cycles. In Riemannian Geometric Statistics in Medical Image Analysis, (pp 441–477)Academic Press.

  • Cury, C., Glaunes, J. A., & Colliot, O. (2013). Template estimation for large database: A diffeomorphic iterative centroid method using currents. International Conference on Geometric Science of Information (pp. 103–111). Cham: Springer.

    Chapter  Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis: Wiley series in probability and statistics. New York: Wiley.

    Google Scholar 

  • Ebin, D. G. (1970). The manifold of Riemannian metrics, in Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif.),11–40(1968). Amer Providence, R.I.: Math. Soc.

  • Federer, H. (1969). Geometric measure theory. Cham: Springer.

    MATH  Google Scholar 

  • Floater, M. S., & Hormann, K. (2005). Surface parameterization: A tutorial and survey. Advances in multiresolution for geometric modelling (pp. 157–186). Cham: Springer.

    Chapter  Google Scholar 

  • Frenkel, M., & Basri, R. (2003). Curve matching using the fast marching method. International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (pp. 35–51). Cham: Springer.

    Chapter  Google Scholar 

  • Fröhlich, S., & Botsch, M. (2011). Example-driven deformations based on discrete shells. Computer Graphics Forum, 30(8), 2246–2257.

    Article  Google Scholar 

  • Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W. (2018). ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231

  • Glaunès, J., Qiu, A., Miller, M. I., & Younes, L. (2008). Large deformation diffeomorphic metric curve mapping. International Journal of Computer Vision, 80(3), 317.

    Article  Google Scholar 

  • Grzegorzek, M., Theobalt, C., Koch, R., & Kolb, A. (2013). Time-of-Flight and Depth Imaging. Sensors, Algorithms and Applications: Dagstuhl Seminar 2012 and GCPR Workshop on Imaging New Modalities, (Vol. 8200). Springer.

  • Jermyn, I. H., Kurtek, S., Klassen, E., & Srivastava, A. (2012). Elastic shape matching of parameterized surfaces using square root normal fields. European Conference on Computer Vision (pp. 804–817). Cham: Springer.

    Google Scholar 

  • Jermyn, I. H., Kurtek, S., Laga, H., & Srivastava, A. (2017). Elastic shape analysis of three-dimensional objects. Synthesis Lectures on Computer Vision, 12(1), 1–185.

    Article  Google Scholar 

  • Kaltenmark, I., Charlier, B., & Charon, N. (2017). A general framework for curve and surface comparison and registration with oriented varifolds. In Computer Vision and Pattern Recognition (CVPR).

  • Kendall, D. G., Barden, D., Carne, T. K., & Le, H. (1999). Shape and shape theory. Chichester: John Wiley & Sons.

    Book  MATH  Google Scholar 

  • Kilian, M., Mitra, N. J., & Pottmann, H. (2007). Geometric modeling in shape space. ACM Trans Graphics, 26(3), 64-es.

    Article  Google Scholar 

  • Klassen, E., & Michor, P. W. (2020). Closed surfaces with different shapes that are indistinguishable by the SRNF. Archivum Mathematicum, 56(2), 107–114.

    Article  MathSciNet  MATH  Google Scholar 

  • Kokoszka, P., & Reimherr, M. (2017). Introduction to functional data analysis. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  • Kurtek, S., Klassen, E., Gore, J. C., Ding, Z., & Srivastava, A. (2012). Elastic geodesic paths in shape space of parameterized surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9), 1717–1730.

    Article  Google Scholar 

  • Laga, H., Xie, Q., Jermyn, I. H., & Srivastava, A. (2017). Numerical inversion of SRNF maps for elastic shape analysis of genus-zero surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2451–2464.

    Article  Google Scholar 

  • Lahiri, S., Robinson, D., & Klassen, E. (2015). Precise matching of PL curves in \({\mathbb{R}}^N\) in the square root velocity framework. Geometry, Imaging and Computing, 2(3), 133–186.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(1–3), 503–528.

    Article  MathSciNet  MATH  Google Scholar 

  • Marin, R., Melzi, S., Rodolà, E., & Castellani, U. (2019). High-resolution augmentation for automatic template-based matching of human models. In: 2019 International Conference on 3D Vision (3DV), (pp. 230–239) IEEE.

  • Mennucci, A., Yezzi, A., & Sundaramoorthi, G. (2008). Properties of Sobolev-type metrics in the space of curves. Interfaces Free Bound, 10(4), 423–445.

    Article  MathSciNet  MATH  Google Scholar 

  • Michor, P. W. (2008). Topics in differential geometry, Graduate Studies in Mathematics (Vol. 93). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Michor, P. W., & Mumford, D. (2005). Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Documenta Math, 10, 217–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Michor, P. W., & Mumford, D. (2006). Riemannian geometries on spaces of plane curves. Journal of the European Mathematical Society, 8, 1–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Michor, P. W., & Mumford, D. (2007). An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Applied and Computational Harmonic Analysis, 23(1), 74–113.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, M., Ratnanather, J. T., Tward, D. J., Brown, T., Lee, D., Ketcha, M., et al. (2015). Network neurodegeneration in Alzheimer’s disease via MRI based shape diffeomorphometry and high-field atlasing. Frontiers in Bioengineering and Biotechnology, 3, 54.

    Article  Google Scholar 

  • Minh, H. Q., Murino, V., & Minh, H. Q. (2016). Algorithmic advances in Riemannian geometry and applications. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Needham, T., & Kurtek, S. (2020). Simplifying transforms for general elastic metrics on the space of plane curves. SIAM Journal on Imaging Sciences, 13(1), 445–473.

    Article  MathSciNet  MATH  Google Scholar 

  • Niethammer, M., Kwitt, R., & Vialard, F. X. (2019). Metric learning for image registration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 8463–8472).

  • Pennec, X., Sommer, S., & Fletcher, T. (2019). Riemannian geometric statistics in medical image Analysis. London: Academic Press.

    MATH  Google Scholar 

  • Roussillon, P., & Glaunes, J. A. (2016). Kernel metrics on normal cycles and application to curve matching. SIAM Journal of Imaging Sciences, 9(4), 1991–2038.

    Article  MathSciNet  MATH  Google Scholar 

  • Rumpf, M., & Wardetzky, M. (2014). Geometry processing from an elastic perspective. GAMM-Mitteilungen, 37(2), 184–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Rumpf, M., & Wirth, B. (2015a). Variational methods in shape analysis. Handbook of Mathematical Methods in Imaging, 2, 1819–1858.

    Article  MathSciNet  MATH  Google Scholar 

  • Rumpf, M., & Wirth, B. (2015b). Variational time discretization of geodesic calculus. IMA Journal of Numerical Analysis, 35(3), 1011–1046.

    Article  MathSciNet  MATH  Google Scholar 

  • Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2003). On aligning curves. IEEE Transactions on Pattern Analysis and Machine intelligence, 25(1), 116–125.

    Article  Google Scholar 

  • Sheffer, A., Praun, E., Rose, K., et al. (2007). Mesh parameterization methods and their applications. Foundations and Trends in Computer Graphics and Vision, 2(2), 105–171.

    Article  MATH  Google Scholar 

  • Srivastava, A., & Klassen, E. P. (2016). Functional and shape data analysis. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Srivastava, A., Klassen, E., Joshi, S. H., & Jermyn, I. H. (2011). Shape analysis of elastic curves in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7), 1415–1428.

    Article  Google Scholar 

  • Su, Z., Bauer, M., Gallivan, K. A., & Klassen, E. (2020a) Simplifying transformations for a family of elastic metrics on the space of surfaces. In IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

  • Su, Z., Bauer, M., Preston, S. C., Laga, H., & Klassen, E. (2020b). Shape analysis of surfaces using general elastic metrics. Journal of Mathematical Imaging and Vision, 62, 1087–1106.

    Article  MathSciNet  MATH  Google Scholar 

  • Sullivan, J. M. (2008). Curvatures of smooth and discrete surfaces. Discrete difeerential geometry (pp. 175–188). Birkhäuser: Springer.

    Chapter  Google Scholar 

  • Sundaramoorthi, G., Mennucci, A., Soatto, S., & Yezzi, A. (2011). A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM Journal of Imaging Sciences, 4(1), 109–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Tumpach, A. B. (2016). Gauge invariance of degenerate Riemannian metrics. Notices of the AMS, 63(4), 342–350.

    MathSciNet  MATH  Google Scholar 

  • Tumpach, A. B., Drira, H., Daoudi, M., & Srivastava, A. (2015). Gauge invariant framework for shape analysis of surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(1), 46–59.

    Article  Google Scholar 

  • Turaga, P. K., & Srivastava, A. (2016). Riemannian computing in computer vision. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. Biennial International Conference on Information Processing in Medical Imaging (pp. 381–392). Berlin: Springer.

    Chapter  Google Scholar 

  • Willmore, T. J. (1993). Riemannian geometry. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Younes, L. (1998). Computable elastic distances between shapes. SIAM Journal of Applied Mathematics, 58(2), 565–586.

    Article  MathSciNet  MATH  Google Scholar 

  • Younes, L. (2010). Shapes and diffeomorphisms (Vol. 171). Berlin: Springer.

    MATH  Google Scholar 

  • Younes, L., Michor, P. W., Shah, J., & Mumford, D. (2008). A metric on shape space with explicit geodesics. Rendiconti Lincei-Matematica e Applicazioni, 19(1), 25–57.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Stanley Durrleman, José Braga, and Jean Dumoncel for the use of the cochlea data, Wojtek Zbijewski and his group for sharing the tibia surfaces as well as Daniel Tward and the BIOCARD team for sharing the amygdala dataset. In addition, we thank Zhe Su for his help with Fig. 1 and the whole shape group at Florida State University for helpful discussions during the preparation of this manuscript.

Funding

MB is supported by NSF Grant 1912037 (collaborative research in connection with 1912030). NC and HH are supported by NSF Grants 1819131 and 1945224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Charon.

Additional information

Communicated by Kwan-Yee Kenneth Wong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Notation

Throughout this section, \(h \in T_q\mathcal {I}=C^\infty (M,{\mathbb {R}}^3)\) denotes a tangent vector to \(q\in \mathcal {I}\), and XY are vector fields on M. Traces are denoted by \({{\,\mathrm{Tr}\,}}\) or a dot, T is the tangent functor, and D stands for directional derivatives. For instance, the derivative at q in the direction of h is denoted by \(D_{(q,h)}\). We write \({\overline{g}}=\langle \cdot ,\cdot \rangle \) for the Euclidean inner product on \({\mathbb {R}}^3\), \(|\cdot |\) for the Euclidean norm on \({\mathbb {R}}^3\), \(g_q=q^*{\overline{g}}\) for the pull-back metric on TM, \(g_q^{-1}\) for the cometric on \(T^*M\), and \(g_q^{-1}\otimes {\overline{g}}\) for the product metric on \(T^*M\otimes {\mathbb {R}}^3\). The metric \(g_q\) corresponds to a fiber-linear map \(\flat \) from TM to \(T^*M\), and the cometric \(g_q^{-1}\) corresponds to a fiber-linear map \(\sharp \) from \(T^*M\) to M. The Riemannian surface measure of \(g_q\) is denoted by \(A_q\), and the corresponding half-density by \(A_q^{1/2}\). The surface measure is a section of the volume bundle \(\mathrm {Vol}\), and the half-density of the half-density bundle \(\mathrm {Vol}^{1/2}\). The normal projection \(\bot :M\rightarrow L({\mathbb {R}}^3,{\mathbb {R}}^3)\) is defined as \(\bot =\langle \cdot ,n_q\rangle n_q\), the tangential projection \(\top :M\rightarrow L({\mathbb {R}}^3,TM)\) is defined as \(\top =(Tq)^{-1}({\text {Id}}_{{\mathbb {R}}^3}-\bot )\), and one has the identity \(\bot +Tq\circ \top ={{\,\mathrm{Id}\,}}_{{\mathbb {R}}^3}\). Depending on the context, \(\nabla \) is the covariant derivative on \({\mathbb {R}}^3\), which coincides with the usual coordinate derivative, or the Levi-Civita covariant derivative of \(g_q\). For instance, in the definition \(\nabla ^2_{X,Y}h:=\nabla _X\nabla _Yh-\nabla _{\nabla _XY}h\), only \(\nabla _XY\) is the Levi-Civita covariant derivative, and all other derivatives are coordinate derivatives.

B Formula for SRNF Metrics

In this section we establish the explicit formula (14) for the SRNF metric. We need some variational formulas from e.g. Bauer et al. (2012):

$$\begin{aligned} D_{(q,h)}A_q =&{{\,\mathrm{Tr}\,}}\big (g_q^{-1}.\langle \nabla h,Tq\rangle \big )A_q = {{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )\;, \\ D_{(q,h)}A_q^{1/2} =&\tfrac{1}{2}{{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )A_q^{1/2}\;, \\ D_{(q,h)}n_q =&-Tq\circ \langle n_q,\nabla h\rangle ^\sharp \;, \\ D_{(q,h)}N_q {=}&\Big (-Tq\circ \langle n_q,\nabla h\rangle ^\sharp +n_q \tfrac{1}{2}{{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )\Big )A_q^{1/2}\;. \end{aligned}$$

Putting these together, one obtains the following expression for the SRNF metric (13):

$$\begin{aligned} G_q(h,h) :=&\int _M |D_{(q,h)}N_q|^2 \\=&\int _M|Tq\circ \langle n_q,\nabla h\rangle ^\sharp |^2A_q \\ {}&+ \int _M|n_q \tfrac{1}{2}{{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )|^2A_q \\=&\int _M|\langle n_q,\nabla h\rangle |_{g_q^{-1}}^2A_q + \frac{1}{4}\int _M{{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )^2A_q \\=&\int _M|(\nabla h)^\bot |_{g_q^{-1}\otimes \overline{g}}^2A_q + \frac{1}{4}\int _M{{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )^2A_q\;. \end{aligned}$$

C Approximation Properties of SRNF Distances

This section makes precise in what sense the SRNF distance approximates the geodesic distance of the SRNF metric. The geodesic distance of the SRNF metric is lower-bounded by the SRNF distance because the latter is a chordal distance:

$$\begin{aligned} \mathrm {dist}_{\mathcal {I}}(q_0,q_1)^2 :=&\inf _q \int _0^1 G_q(\partial _t q,\partial _t q) dt \\=&\inf _q \int _0^1 |D_{(q,\partial _t q)}N_q|^2 dt {\ge } \Vert N_{q_1}-N_{q_0}\Vert _{L^2}^2\;, \end{aligned}$$

where the infimum is over all paths q as in (11). Conversely, the geodesic distance of the SRNF metric is upper-bounded by the length of the linear interpolation between the immersions \(q_0\) and \(q_1\), provided they are sufficiently close to each other for this to make sense, leading to the upper bound

$$\begin{aligned} \mathrm {dist}_{\mathcal {I}}(q_0,q_1)^2&\le G_{q_0}(q_1-q_0,q_1-q_0) \\ {}&= \Vert D_{(q_0,q_1-q_0)}N_{q_0}\Vert _{L^2}^2 \approx \Vert N_{q_1}-N_{q_0}\Vert _{L^2}^2\;, \end{aligned}$$

which is valid in any chart around \(q_0\) up to terms of order \(o(\Vert N_{q_1}-N_{q_0}\Vert _{L^2}^2)\).

D Formula for SRCF Metrics

Recall that the scalar and vector-valued second fundamental forms are defined as

$$\begin{aligned} s_q(X,Y)&{:=} \langle \nabla _X(Tq\circ Y),n_q\rangle \;,&S_q(X,Y)&{:=} s_q(X,Y)n_q\;, \end{aligned}$$

for any vector fields X and Y on M. Following Bauer et al. (2012), one obtains the variational formulas

$$\begin{aligned}&D_{(q,h)} s_q(X,Y) = \langle D_{(q,h)}\nabla _X(Tq\circ Y),n_q\rangle \\ {}&\qquad +\langle \nabla _X(Tq\circ Y),D_{(q,h)}n_q\rangle \\ {}&\quad = \langle \nabla _X\nabla _Yh,n_q\rangle -\langle \nabla _X(Tq\circ Y),Tq\circ \langle \nabla h,n_q\rangle ^\sharp \rangle \\ {}&\quad = \langle \nabla _X\nabla _Yh,n_q\rangle -g_q( \nabla _XY,\langle \nabla h,n_q\rangle ^\sharp ) \\ {}&\quad = \langle \nabla _X\nabla _Yh,n_q\rangle -\langle \nabla _{\nabla _XY} h,n_q\rangle = \langle \nabla ^2_{X,Y}h,n_q\rangle \;, \\&\quad D_{(q,h)} S_q(X,Y) = (D_{(q,h)} s_q(X,Y))n_q + s_q(X,Y)(D_{(q,h)} n_q) \\ {}&\quad = (\nabla ^2_{X,Y}h)^\bot -s_q(X,Y)Tq\circ \langle \nabla h,n_q\rangle ^\sharp \;. \end{aligned}$$

Using the formula \(\Delta _q=-{{\,\mathrm{Tr}\,}}(g_q^{-1}\nabla ^2)\) for the Laplacian, this yields the following variational formula for the vector-valued mean curvature \(H_q={{\,\mathrm{Tr}\,}}(g_q^{-1}S_q)\):

$$\begin{aligned} D_{(q,h)}g_q&= D_{(q,h)}\langle Tq,Tq\rangle = \langle \nabla h,Tq\rangle + \langle Tq,\nabla h\rangle \;, \\ D_{(q,h)}g_q^{-1}&= -g_q^{-1}(D_{(q,h)}g_q)g_q^{-1}\;, \\ D_{(q,h)}H_q&= {{\,\mathrm{Tr}\,}}(g_q^{-1}D_{(q,h)}S_q) + {{\,\mathrm{Tr}\,}}(S_qD_{(q,h)}g_q^{-1}) \\ {}&= -(\Delta _q h)^\bot -{{\,\mathrm{Tr}\,}}(g_q^{-1}s_q)Tq\circ \langle \nabla h,n_q\rangle ^\sharp \\ {}&\qquad \quad -2{{\,\mathrm{Tr}\,}}(S_qg_q^{-1}\langle \nabla h,Tq\rangle g_q^{-1})\;. \end{aligned}$$

Letting \(C(\nabla h)\) denote the first-order terms in \(-D_{(q,h)}H_q\), one obtains the desired formula for the SRCF metric:

$$\begin{aligned} G_q(h,h)&:=\int _M|D_{(q,h)}H_q|^2A_q = \int _M |(\Delta _qh)^\bot +C(\nabla h)|^2A_q\;. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, M., Charon, N., Harms, P. et al. A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation. Int J Comput Vis 129, 2425–2444 (2021). https://doi.org/10.1007/s11263-021-01476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-021-01476-6

Keywords

Navigation