Skip to main content
Log in

Assessment of Lead Contamination in Peatlands Using Field Portable XRF

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Ombrotrophic peatlands are highly sensitive to atmospheric heavy metal deposition. Previous attempts to quantify peatland lead pollution have been undertaken using the inventory approach. However, there can be significant within-site spatial heterogeneity in lead concentrations, highlighting the need for multiple samples to properly quantify lead storage. Field portable x-ray fluorescence (FPXRF) continues to gain acceptance in the study of contaminated soil, but has not thus far been used to assess peatland lead contamination. This study compares lead concentrations in surface peat samples from the South Pennines (UK) derived using (a) FPXRF in the field, (b) FPXRF in the lab on dried samples and (c) ICP-OES analysis. FPXRF field and lab data are directly comparable when field measurements are corrected for water content, both can be easily used to estimate acid extractable lead using regression equations. This study is a successful demonstration of FPXRF as a tool for a time- and cost-effective means of determining the lead content of contaminated peatlands, which will allow rapid landscape scale reconnaissance, core logging, surface surveys and sediment tracing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Argyraki, A., Ramsey, M. H., & Potts, P. J. (1997). Evaluation of portable X-ray fluorescence instrumentation for in situ measurements of lead on contaminated land. Analyst, 122(8), 743–749.

    Article  CAS  Google Scholar 

  • Bernick, M. B., Kalnicky, D. J., Prince, G., & Singhvi, R. (1995). Results of field-portable X-ray-fluorescence analysis of metal contaminants in soil and sediment. Journal of Hazardous Materials, 43(1–2), 101–110.

    Article  CAS  Google Scholar 

  • Bindler, R., Klarqvist, M., Klaminder, J., & Forster, J. (2004). Does within-bog spatial variability of mercury and lead constrain reconstructions of absolute deposition rates from single peat records? The example of Store Mosse, Sweden. Global Biogeochemical Cycles, 18(3).

  • Block, C. N., Shibata, T., Solo-Gabriele, H. M., & Townsend, T. G. (2007). Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood. Environmental Pollution, 148(2), 627–633.

    Article  CAS  Google Scholar 

  • Bonn, A., Allott, T. E. H., Hubacek, K., & Stewart, J. (2009). Drivers of environmental change in uplands. Abingdon: Routledge.

    Google Scholar 

  • Bower, M. M. (1960). The erosion of blanket peat in the Southern Pennines. East Midlands Geogr, 2(13), 22–33.

    Google Scholar 

  • Bower, M. M. (1961). The distribution of erosion in blanket peat bogs in the Pennines. Transactions of the Institute of British Geographers, 29, 17–30.

    Article  Google Scholar 

  • Boyle, J. F. (2000). Rapid elemental analysis of sediment samples by isotope source XRF. Journal of Paleolimnology, 23(2), 213–221.

    Article  Google Scholar 

  • Brännvall, M.-L., Bindler, R., Emteryd, O., & Renberg, I. (2001). Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. Journal of Paleolimnology, 25, 421–435.

    Article  Google Scholar 

  • Clark, S., Menrath, W., Chen, M., Roda, S., & Succop, P. (1999). Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples. Annals of Agricultural and Environmental Medicine: AAEM, 6(1), 27–32.

    CAS  Google Scholar 

  • Dawson, J. J. C., Tetzlaff, D., Carey, A. M., Raab, A., Soulsby, C., Killham, K., & Meharg, A. A. (2010). Characterizing Pb mobilization from upland soils to streams using Pb-206/Pb-207 isotopic ratios. Environmental Science and Technology, 44(1), 243–249.

    Article  CAS  Google Scholar 

  • De Vleeschouwer, F., Gerard, L., Goormaghtigh, C., Mattielli, N., Le Roux, G., & Fagel, N. (2007). Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia: Human impact on a regional to global scale. Science of the Total Environment, 377(2–3), 282–295.

    Article  Google Scholar 

  • EAG (2007). ICP-OES and ICP-MS Detection Limit Guidance [Online]. http://www.eaglabs.com/documents/icp-oes-ms-detection-limit-guidance-BR023.pdf. Accessed 20 Feb 2013

  • Ebdon, D. (1985). Statistics in geography: a practical approach—revised with 17 programs. Oxford: Blackwell.

    Google Scholar 

  • Farmer, J. G., Graham, M. C., Bacon, J. R., Dunn, S. M., Vinogradoff, S. I., & MacKenzie, A. B. (2005). Isotopic characterisation of the historical lead deposition record at Glensaugh, an organic-rich, upland catchment in rural NE Scotland. Science of the Total Environment, 346(1–3), 121–137.

    Article  CAS  Google Scholar 

  • Ge, L. Q., Lai, W. C., & Lin, Y. C. (2005). Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis. X-Ray Spectrometry, 34(1), 28–34.

    Article  CAS  Google Scholar 

  • Hong, S. M., Candelone, J.-P., Patterson, C. C., & Boutron, C. F. (1994). Greenland ice evidence of hemispheric lead pollution 2 millennia ago by Greek and Roman civilizations. Science, 265, 1841–1843.

    Article  CAS  Google Scholar 

  • Hou, X. D., He, Y. H., & Jones, B. T. (2004). Recent advances in portable X-ray fluorescence spectrometry. Applied Spectroscopy Reviews, 39(1), 1–25.

    Article  CAS  Google Scholar 

  • Hürkamp, K., Raab, T., & Völkel, J. (2009a). Lead pollution of floodplain soils in a historic mining area—age, distribution and binding forms. Water, Air, and Soil Pollution, 201(1–4), 331–345.

    Article  Google Scholar 

  • Hürkamp, K., Raab, T., & Völkel, J. (2009b). Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis. Geomorphology, 110, 28–36.

    Article  Google Scholar 

  • Jones, J. M., & Hao, J. (1993). Ombrotrophic peat as a medium for historical monitoring of heavy-metal pollution. Environmental Geochemistry and Health, 15(2–3), 67–74.

    Article  CAS  Google Scholar 

  • Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83(1–2), 93–122.

    Article  CAS  Google Scholar 

  • Kempter, H., & Frenzel, B. (2000). The impact of early mining and smelting on the local tropospheric aerosol detected in ombrotrophic peat bogs in the Harz, Germany. Water, Air, and Soil Pollution, 121(1–4), 93–108.

    Article  CAS  Google Scholar 

  • Kilbride, C., Poole, J., & Hutchings, T. R. (2006). A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Environmental Pollution, 143(1), 16–23.

    Article  CAS  Google Scholar 

  • Komarek, M., Chrastny, V., Ettler, V., & Tlustos, P. (2006). Evaluation of extraction/digestion techniques used to determine lead isotopic composition in forest soils. Analytical and Bioanalytical Chemistry, 385(6), 1109–1115.

    Article  CAS  Google Scholar 

  • Le Roux, G., & De Vleeschouwer, F. (2010/11). Preparation of peat samples for inorganic geochemistry used as palaeoenvironmental proxies. Mires and Peat, 7, 1–9.

    Google Scholar 

  • Lee, J. A., & Tallis, J. H. (1973). Regional and historical aspects of lead pollution in Britain. Nature, 245(5422), 216–218.

    Article  CAS  Google Scholar 

  • Livett, E. A., Lee, J. A., & Tallis, J. H. (1979). Lead, zinc and copper analyses of British blanket peats. Journal of Ecology, 67(3), 865–891.

    Article  CAS  Google Scholar 

  • Lowemark, L., Chen, H. F., Yang, T. N., Kylander, M., Yu, E. F., Hsu, Y. W., Lee, T. Q., Song, S. R., & Jarvis, S. (2011). Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences, 40(6), 1250–1256.

    Article  Google Scholar 

  • MacKenzie, A. B., Logan, E. M., Cook, G. T., & Pulford, I. D. (1998). Distributions, inventories and isotopic composition of lead in Pb-210-dated peat cores from contrasting biogeochemical environments: Implications for lead mobility. Science of the Total Environment, 223(1), 25–35.

    Article  CAS  Google Scholar 

  • Makinen, E., Korhonen, M., Viskari, E. L., Haapamaki, S., Jarvinen, M., & Lu, L. (2006). Comparison of XRF and FAAS methods in analysing CCA contaminated soils. Water, Air, and Soil Pollution, 171(1–4), 95–110.

    Article  Google Scholar 

  • Markert, B., & Thornton, I. (1990). Multielement analysis of an English peat bog soil. Water, Air, and Soil Pollution, 49(1–2), 113–123.

    Article  CAS  Google Scholar 

  • Martin Peinado, F., Morales Ruano, S., Bagur Gonzalez, M. G., & Estepa Molina, C. (2010). A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF). Geoderma, 159(1–2), 76–82.

    Article  Google Scholar 

  • Marx, S. K., Kamber, B. S., McGowan, H. A., & Zawadzki, A. (2010). Atmospheric pollutants in alpine peat bogs record a detailed chronology of industrial and agricultural development on the Australian continent. Environmental Pollution, 158(5), 1615–1628.

    Article  CAS  Google Scholar 

  • Mihaljevic, M., Zuna, M., Ettler, V., Sebek, O., Strnad, L., & Golias, V. (2006). Lead fluxes, isotopic and concentration profiles in a peat deposit near a lead smelter (Pribram, Czech Republic). Science of the Total Environment, 372(1), 334–344.

    Article  CAS  Google Scholar 

  • Monna, F., Galop, D., Carozza, L., Tual, M., Beyrie, A., Marembert, F., Chateau, C., Dominik, J., & Grousset, F. (2004). Environmental impact of early Basque mining and smelting recorded in a high ash minerogenic peat deposit. Science of the Total Environment, 327(1–3), 197–214.

    Article  CAS  Google Scholar 

  • Murozumi, M., Chow, T. J., & Patterson, C. C. (1969). Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochimica et Cosmochimica Acta, 33, 1247–1294.

    Article  CAS  Google Scholar 

  • Novak, M., Emmanuel, S., Vile, M. A., Erel, Y., Veron, A., Paces, T., Wieder, R. K., Vanecek, M., Stepanova, M., Brizova, E., & Hovorka, J. (2003). Origin of lead in eight central European peat bogs determined from isotope ratios, strengths, and operation times of regional pollution sources. Environmental Science and Technology, 37(3), 437–445.

    Article  CAS  Google Scholar 

  • Novak, M., Zemanova, L., Voldrichova, P., Stepanova, M., Adamova, M., Pacherova, P., Komarek, A., Krachler, M., & Prechova, E. (2011). Experimental evidence for mobility/immobility of metals in peat. Environmental Science and Technology, 45(17), 7180–7187.

    Article  CAS  Google Scholar 

  • Perkin Elmer (2011). Atomic spectroscopy: a guide to selecting the appropriate technique and system. http://www.perkinelmer.co.uk/PDFs/Downloads/BRO_WorldLeaderAAICPMSICPMS.pdf. Accessed 20 Feb 2013

  • Raab, T,. Hürkamp, K., Völkel, J. (2005). Detection and quantification of heavy metal contamination in alluvial soils of historic mining areas by field portable X-ray fluorescence (FPXRF) analysis. In: Proceedings of International Conference on Problematic Soils 25-27 May 2005. Eastern Mediterranean University, Famagusta, N. Cyprus

  • Radu, T., & Diamond, D. (2009). Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. Journal of Hazardous Materials, 171(1–3), 1168–1171.

    Article  CAS  Google Scholar 

  • Renberg, I., Wik-Persson, M., & Emteryd, O. (1994). Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature, 368, 323–326.

    Article  CAS  Google Scholar 

  • Renberg, I., Bindler, R., & Brännvall, M.-L. (2001). Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. The Holocene, 11(5), 511–516.

    Article  Google Scholar 

  • Ridings, M., Shorter, A. J., & Smith, J. B. (2000). Strategies for the investigation of contaminated sites using field portable X-ray fluorescence (FPXRF) techniques. Communications in Soil Science and Plant Analysis, 31(11–14), 1785–1790.

    Article  CAS  Google Scholar 

  • Rothwell, J. J., Robinson, S. G., Evans, M. G., Yang, J., & Allott, T. E. H. (2005). Heavy metal release by peat erosion in the Peak District, southern Pennines, UK. Hydrological Processes, 19(15), 2973–2989.

    Article  CAS  Google Scholar 

  • Rothwell, J. J., Evans, M. G., Lindsay, J. B., & Allott, T. E. H. (2007a). Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK. Environmental Pollution, 145(1), 111–120.

    Article  CAS  Google Scholar 

  • Rothwell, J. J., Evans, M. G., & Allott, T. E. H. (2007b). Lead contamination of fluvial sediments in an eroding blanket peat catchment. Applied Geochemistry, 22(2), 446–459.

    Article  CAS  Google Scholar 

  • Rothwell, J. J., Evans, M. G., Daniels, S. A., & Allott, T. E. H. (2008). Peat soils as a source of lead contamination to upland fluvial systems. Environmental Pollution, 153(3), 582–589.

    Article  CAS  Google Scholar 

  • Rothwell, J. J., Taylor, K. G., Chenery, S. R. N., Cundy, A. B., Evans, M. G., & Allottt, T. E. H. (2010a). Storage and behavior of As, Sb, Pb, and Cu in ombrotrophic peat bogs under contrasting water table conditions. Environmental Science and Technology, 44(22), 8497–8502.

    Article  CAS  Google Scholar 

  • Rothwell, J. J., Lindsay, J. B., Evans, M. G., & Allott, T. E. H. (2010b). Modelling suspended sediment lead concentrations in contaminated peatland catchments using digital terrain analysis. Ecological Engineering, 36(5), 623–630.

    Article  Google Scholar 

  • Shefsky, S. (1997). Comparing field portable x-ray fluorescence (XRF) to laboratory analysis of heavy metals in soil. http://www.clu-in.org/download/char/dataquality/sshefsky02.pdf. Accessed 14 Jan 2013

  • Shotbolt, L., Hutchinson, S., & Thomas, A. (2006). Sediment stratigraphy and heavy metal fluxes to reservoirs in the Southern Pennine Uplands, UK. Journal of Paleolimnology, 35(2), 305–322.

    Article  Google Scholar 

  • Shotyk, W., Weiss, D., Appleby, P. G., Cheburkin, A. K., Frei, R., Gloor, M., Kramers, J. D., Reese, S., & Van der Knaap, W. O. (1998). History of atmospheric lead deposition since 12,370 C-14 yr BP from a peat bog, Jura Mountains, Switzerland. Science, 281(5383), 1635–1640.

    Article  CAS  Google Scholar 

  • Shotyk, W., Blaser, P., Grunig, A., & Cheburkin, A. K. (2000). A new approach for quantifying cumulative, anthropogenic, atmospheric lead deposition using peal cores from bogs: Pb in eight Swiss peat bog profiles. Science of the Total Environment, 249(1–3), 281–295.

    Article  CAS  Google Scholar 

  • Shotyk, W., Goodsite, M. E., Roos-Barraclough, F., Frei, R., Heinemeier, J., Asmund, G., Lohse, C., & Hansen, T. S. (2003). Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C “bomb pulse curve”. Geochimica et Cosmochimica Acta, 67(21), 3991–4011.

    Article  CAS  Google Scholar 

  • Shuttleworth, E. L., Evans, M. G., Rothwell, J. J., & Hutchinson, S. M. (2012). Impacts of erosion and restoration on POC flux and pollutant mobilisation in the peatlands of the Peak District National Park, UK (EGU General Assembly 2012). Vienna: Austria.

    Google Scholar 

  • Smith, E. J., Hughes, S., Lawlor, A. J., Lofts, S., Simon, B. M., Stevens, P. A., Stidson, R. T., Tipping, E., & Vincent, C. D. (2005). Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect. Environmental Pollution, 136(1), 11–18.

    Article  CAS  Google Scholar 

  • Solo-Gabriele, H. M., Townsend, T. G., Hahn, D. W., Moskal, T. M., Hosein, N., Jambeck, J., & Jacobi, G. (2004). Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste. Waste Management, 24(4), 413–424.

    Article  CAS  Google Scholar 

  • Sterling, D. A., Lewis, R. D., Luke, D. A., & Shadel, B. N. (2000). A portable x-ray fluorescence instrument for analyzing dust wipe samples for lead: evaluation with field samples. Environmental Research, 83(2), 174–179.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1976). Stability-constants of Cu2+, Pb2+, and Cd2+ complexes with humic acids. Soil Science Society of America Journal, 40(5), 665–672.

    Article  CAS  Google Scholar 

  • Sturgeon, R. E. (2000). Current practice and recent developments in analytical methodology for trace element analysis of soils, plants, and water. Communications in Soil Science and Plant Analysis, 31(11–14), 1479–1512.

    Article  CAS  Google Scholar 

  • Tallis, J. H. (1985). Mass movement and erosion of a southern Pennine blanket peat. Journal of Ecology, 73(1), 283–315.

    Article  Google Scholar 

  • Teutsch, N., Erel, Y., Halicz, L., & Banin, A. (2001). Distribution of natural and anthropogenic lead in Mediterranean soils. Geochimica et Cosmochimica Acta, 65(17), 2853–2864.

    Article  CAS  Google Scholar 

  • Tipping, E., Smith, E. J., Lawlor, A. J., Hughes, S., & Stevens, P. A. (2003). Predicting the release of metals from ombrotrophic peat due to drought-induced acidification. Environmental Pollution, 123(2), 239–253.

    Article  CAS  Google Scholar 

  • Tyler, G., Pahlsson, A. M. B., Bengtsson, G., Baath, E., & Tranvik, L. (1989). Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates—a review. Water, Air, and Soil Pollution, 47(3–4), 189–215.

    Article  CAS  Google Scholar 

  • USEPA (1998). Environmental technology verification report. Field portable X-ray fluorescence analyzer. Metorex X-MET 920-P and 940, EPA/600/R-97/146.: United States Environmental Protection Agency

  • USEPA (2008). Basic XRF concepts. Advanced design application, data analysis for field-portable XRF. United States Environmental Protection Agency

  • Van Asselen, S., & Roosendaal, C. (2009). A new method for determining the bulk density of uncompacted peat from field settings. Journal of Sedimentary Research, 79, 918–922.

    Google Scholar 

  • Van Cott, R. J., McDonald, B. J., & Seelos, A. G. (1999). Standard soil sample preparation error and comparison of portable XRF to laboratory AA analytical results. Nuclear Instruments and Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 422(1–3), 801–804.

    Google Scholar 

  • Vile, M. A., Wieder, R. K., & Novak, M. (1999). Mobility of Pb in Sphagnum-derived peat. Biogeochemistry, 45(1), 35–52.

    CAS  Google Scholar 

  • Vile, M. A., Wieder, R. K., & Novak, M. (2000). 200 years of Pb deposition throughout the Czech Republic: patterns and sources. Environmental Science and Technology, 34(1), 12–21.

    Article  CAS  Google Scholar 

  • Weiss, D., Shotyk, W., Appleby, P. G., Kramers, I. D., & Cheburkin, A. K. (1999). Atmospheric Pb deposition since the industrial revolution recorded by five Swiss peat profiles: enrichment factors, fluxes, isotopic composition, and sources. Environmental Science and Technology, 33(9), 1340–1352.

    Article  CAS  Google Scholar 

  • Yafa, C., & Farmer, J. G. (2006). A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry. Analytica Chimica Acta, 557(1–2), 296–303.

    Article  CAS  Google Scholar 

  • Zheng, J., Shotyk, W., Krachler, M., & Fisher, D. (2007). 15,800 years of atmospheric lead deposition on Devon Ice Cap, Nunavut, Canada: natural and anthropogenic enrichments, isotopic composition, and predominant sources. Global Biogeochemical Cycles, 21, GB2027.

    Article  Google Scholar 

Download references

Acknowledgments

We thank The University of Manchester for the provision of a Graduate Teaching Studentship (to E. L. Shuttleworth). We are grateful to The National Trust and United Utilities for allowing work to be carried out at the study sites and to the University of Manchester and Moors for the Future who provided funding for analytical costs. Thanks also go to John Moore, Jonathan Yarwood and Laurie Cunliffe for their assistance in the lab and to Jason Dortch for his help with constructing the figures. Finally, we would like to thank the reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Shuttleworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuttleworth, E.L., Evans, M.G., Hutchinson, S.M. et al. Assessment of Lead Contamination in Peatlands Using Field Portable XRF. Water Air Soil Pollut 225, 1844 (2014). https://doi.org/10.1007/s11270-013-1844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1844-2

Keywords

Navigation