Skip to main content

Advertisement

Log in

Heather Moorland Vegetation and Air Pollution: A Comparison and Synthesis of Three National Gradient Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Large-scale spatial gradient studies are increasingly used to understand the impacts of air pollution and devise appropriate conservation and policy responses, but how consistent are the conclusions we draw from these surveys? Here, we address this question by comparing three independent gradient studies from the same habitat, UK heather moorlands. We harmonise and re-analyse vegetation data from these surveys in relation to cumulative nitrogen deposition, sulphur deposition and other potential drivers and use these results to assess the possible impacts of air pollution in this habitat. Air pollution variables explain more variance in species richness and composition than other variables in the vast majority of analyses. Untangling the relative contribution of nitrogen and (legacy) sulphur deposition is difficult due to strong correlation, but it is likely that nitrogen deposition is currently the dominant driver of change. There is consistency in the negative correlation between species richness and nitrogen deposition, but some variability in the form of this relationship due to small sample sizes. Across surveys there is a high degree of consistency in species identified as either positively or negatively correlated to nitrogen deposition, and no evidence for systematic differences. We conclude that relatively small surveys across wide gradients can provide useful information on potential drivers of diversity, as well as identify sensitive and tolerant species. Our results strongly suggest that nitrogen deposition has a severe and widespread impact on the biodiversity of British heather moorlands and is causing changes in plant communities, including promoting the spread of at least one invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aberdeen, J. C. (1958). The effect of quadrat size, plant size and plant distribution on frequency estimates in plant ecology. Australian Journal of Botany, 6, 47–58.

    Article  Google Scholar 

  • Aude, E., & Ejrnæs, R. (2005). Bryophyte colonisation in experimental microcosms: The role of nutrients, defoliation and vascular vegetation. Oikos, 109, 323–330.

    Article  Google Scholar 

  • Bates, J. W. (1994). Responses of the mosses Brachythecium rutabulum and Pseudoscleropodium purum to a mineral nutrient pulse. Functional Ecology, 8, 686–693.

    Article  Google Scholar 

  • Bates, J. W. (1997). Effects of intermittent desiccation on nutrient economy and growth of two ecologically contrasted mosses. Annals of Botany, 79, 299–309.

    Article  Google Scholar 

  • Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.

    Article  CAS  Google Scholar 

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30–59.

    Article  CAS  Google Scholar 

  • Bortolus, A. (2008). Error cascades in the biological sciences: The unwanted consequences of using bad taxonomy in ecology. Ambio, 37, 114–118.

    Article  Google Scholar 

  • Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325–349.

    Article  Google Scholar 

  • Caporn, S.J.M., Carroll, J.A., Dise, N.B., Payne, R.J. (2014) Impacts and indicators of nitrogen deposition in moorlands. Ecological Indicators, 45, 227–234.

  • Caporn, S. J. M., Song, W., Read, D. J., & Lee, J. A. (1995). The effect of repeated nitrogen fertilization on mycorrhizal infection in heather [Calluna vulgaris (L.) Hull]. New Phytologist, 129, 605–609.

    Article  Google Scholar 

  • Caporn, S.J.M. Edmondson, J., Carroll, J.A., Pilkington, M., & Ray N. (2007). Task 4 — Long-term impacts of enhanced and reduced nitrogen deposition on semi-natural vegetation, In UKREATE (Eds.), Terrestrial umbrella – effects of eutrophication and acidification on terrestrial ecosystems final report (pp. 33–44). Centre for Ecology and Hydrology.

  • Caporn, S.J.M., Field, C., Payne, R., Dise, N., Britton, A., Emmett, B., et al. (2011). Assessing the effects of small increments of atmospheric nitrogen deposition (above the critical load) on semi-natural habitats of conservation importance. Contract report to Natural England, SN218.

  • Carroll, J. A., Caporn, S. J. M., Cawley, L., Read, D. J., & Lee, J. A. (1999). The effect of increased deposition of atmospheric nitrogen on Calluna vulgaris in upland Britain. New Phytologist, 141, 423–431.

    Article  Google Scholar 

  • Cunha, A., Power S.A., Ashmore, M.R., Green, P.R.S., Haworth, B.J., & Bobbink, R. (2002). Whole ecosystem nitrogen manipulation: An updated review, JNCC Report No. 331. Peterborough: Joint Nature Conservancy Council.

  • De Schrijver, A., De Frenne, P., Ampoorter, E., Van Nevel, L., Demey, A., Wuyts, K., & Verheyen, K. (2011). Cumulative nitrogen input drives species loss in terrestrial ecosystems. Global Ecology and Biogeography, 20, 803–816.

  • Dentener, F., et al. (2006). Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 20, GB4003.

    Article  Google Scholar 

  • Diekmann, M., Jandt, U., Alard, D., Bleeker, A., Corcket, E., Gowing, D. J. G., et al. (2014). Long-term changes in calcareous grassland vegetation in North-western Germany—no decline in species richness, but a shift in species composition. Biological Conservation, 172, 170–179.

    Article  Google Scholar 

  • Dirkse, G. M., & Martakis, G. F. P. (1992). Effects of fertilizer on bryophytes in Swedish experiments on forest fertilization. Biological Conservation, 59, 155–161.

    Article  Google Scholar 

  • Duprè, C., Stevens, C. J., Ranke, T., Bleeker, A., Peppler-Lisbach, C., Gowing, D. J., et al. (2010). Changes in species richness and composition in European acidic grasslands over the past 70 years: The contribution of cumulative atmospheric nitrogen deposition. Global Change Biology, 16, 344–357.

    Article  Google Scholar 

  • Edmondson, J. L., Carroll, J. A., Price, E. A. C., & Caporn, S. J. M. (2010). Bio-indicators of nitrogen pollution in heather moorland. Science of the Total Environment, 480, 6202–6209.

    Article  Google Scholar 

  • Field, C., Dise, N.B., Payne, R.J., Britton, A.J., Emmett, B.A., Helliwell, R.C., Hughes, S., Jones, M.L., Lees, S., Leake, J.R., Leith, I.D., Phoeniz, G.K., Power, S.A., Sheppard, L.J., Southon, G.E., Stevens, C.J., Caporn, S.J.M. (2014) The role of nitrogen deposition in widespread plant community change across semi-natural habitats. Ecosystems. doi:10.1007/s10021-014-9765-5.

  • Fowler, D., Muller, J. B. A., & Sheppard, L. J. (2004a). The GaNE programme in a global perspective. Water, Air and Soil Pollution: Focus, 4, 3–8.

    Article  CAS  Google Scholar 

  • Fowler, D., O’Donoghue, M., Muller, J. B. A., Smith, R. I., Dragosits, U., Skiba, U., et al. (2004b). A chronology of nitrogen deposition in the UK between 1900 and 2000. Water, Air and Soil Pollution: Focus, 4, 9–23.

    Article  CAS  Google Scholar 

  • Hallingbäck, T. (1992). The effect of air pollution on mosses in southern Sweden. Biological Conservation, 59, 163–170.

    Article  Google Scholar 

  • Hallbäcken, L., & Zhang, L.-Q. (1998). Effects of experimental acidification, nitrogen addition and liming on ground vegetation in a mature stand of Norway spruce (Picea abies (L.) Karst.) in SE Sweden. Forest Ecology and Management, 108, 201–213.

    Article  Google Scholar 

  • Haworth, B. J., Ashmore, M. R., & Headley, A. D. (2007). Effects of nitrogen deposition on bryophyte species composition of calcareous grasslands. Water, Air and Soil Pollution: Focus, 7, 111–117.

    Article  CAS  Google Scholar 

  • Helsper, H. P. G., Glenn-Lewin, D., & Werger, M. J. A. (1983). Early regeneration of Calluna heathland under various fertilization treatments. Oecologia, 58, 208–214.

    Article  Google Scholar 

  • Hollis, D., & Perry, M. (2004). A new set of long-term averages for the UK. Exeter: Met Office.

    Google Scholar 

  • Jones, M. L. M., Wallace, H. L., Norris, D., Brittain, S. A., Haria, S., Jones, R. E., et al. (2004). Changes in vegetation and soil characteristics in coastal sand dunes along a gradient of atmospheric nitrogen deposition. Plant Biology, 6, 598–605.

    Article  CAS  Google Scholar 

  • Kent, M., & Coker, P. (1992). Vegetation description and analysis: A practical approach. London: Belhaven.

    Google Scholar 

  • Lee, J. A. (1998). Unintentional experiments with terrestrial ecosystems: Ecological effects of sulphur and nitrogen pollutants. Journal of Ecology, 86, 1–12.

    Article  CAS  Google Scholar 

  • Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.

    Article  Google Scholar 

  • Leith, I. D., Mitchell, R. J., Truscott, A. M., Cape, J. N., van Dijk, N., Smith, R. I., et al. (2008). The influence of nitrogen in stemflow and precipitation on epiphytic bryophytes, Isothecium myosuroides Brid., Dicranum scoparium Hewd. and Thuidium tamariscum (Hewd.) Sschimp of Atlantic oakwoods. Environmental Pollution, 155, 237–246.

    Article  CAS  Google Scholar 

  • Mäkipää, R. (1995). Sensitivity of forest-floor mosses in boreal forests to nitrogen and sulphur deposition. Water, Air, & Soil Pollution, 85, 1239–1244.

    Article  Google Scholar 

  • Mäkipää, R., & Heikkinen, J. (2003). Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland. Journal of Vegetation Science, 14, 497–508.

    Article  Google Scholar 

  • Maskell, L. C., Smart, S. M., Bullock, J. M., Thompson, K., & Stevens, C. J. (2010). Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biology, 16, 671–679.

    Article  Google Scholar 

  • Payne, R. J., Thompson, A., Field, C., Standen, V., & Caporn, S. J. M. (2012). Impact of simulated nitrogen pollution on heathland microfauna, mesofauna and plants. European Journal of Soil Biology, 49, 73–79.

    Article  CAS  Google Scholar 

  • Payne, R. J., Stevens, C. J., Dise, N. B., Gowing, D. J., Pilkington, M. G., Phoenix, G. K., et al. (2011). Impacts of atmospheric pollution on the plant communities of British acid grasslands. Environmental Pollution, 159, 2602–2608.

    Article  CAS  Google Scholar 

  • Phoenix, G. K., Emmett, B. A., Britton, A. J., Caporn, S. J. M., Dise, N. B., Helliwell, R., et al. (2012). Impacts of atmospheric nitrogen deposition: Responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology, 18, 1197–1215.

    Article  Google Scholar 

  • Pilkington, M. G., Caporn, S. J. M., Carroll, J. A., Cresswell, N., Lee, J. A., Ashenden, T. W., et al. (2005). Effects of increased deposition of atmospheric nitrogen on an upland moor: Laching of N species and soil solution chemistry. Environmental Pollution, 135, 29–40.

    Article  CAS  Google Scholar 

  • Pitcairn, C. E. R., Fowler, D., & Grace, J. (1995). Deposition of fixed atmospheric nitrogen and foliar nitrogen content of bryophytes and Calluna vulgaris (L.) Hull. Environmental Pollution, 88, 193–205.

    Article  CAS  Google Scholar 

  • Pitcairn, C. E. R., Leith, I. D., Sheppard, L. J., Sutton, M. A., Fowler, D., Munro, R., et al. (1998). The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution, 102, 41–48.

    Article  CAS  Google Scholar 

  • Pitcairn, C.E.R., Leith, I., Sheppard, L.J., & Sutton, M.A. (2006a). Development of a nitrophobe/nitrophile classification for woodlands, grasslands and upland vegetation in Scotland (CEH: Project Report Number: C03066). NERC/Centre for Ecology and Hydrology.

  • Pitcairn, C., Fowler, D., Leith, I., Sheppard, L., Tang, S., Sutton, M., et al. (2006b). Diagnostic indicators of elevated nitrogen deposition. Environmental Pollution, 144, 941–950.

    Article  CAS  Google Scholar 

  • Potter, J. A., Press, M. C., Callaghan, T. V., & Lee, J. A. (1995). Growth responses of Polytrichum commune and Hylocomium splendens to simulated environmental change in the sub-Arctic. New Phytologist, 131, 533–541.

    Article  Google Scholar 

  • Power, S. A., Ashmore, M. R., & Cousins, D. A. (1998). Impacts and fate of experimentally enhanced nitrogen deposition on a British lowland heath. Environmental Pollution, 102, 27–34.

    Article  CAS  Google Scholar 

  • Rodwell, J. S. (Ed.). (1991). British plant communities: Mires and heaths (Vol. 2). Cambridge: Cambridge University Press.

    Google Scholar 

  • RoTAP. (2012). Review of transboundary air Pollution. London: Department for Environment Food and Rural Affairs.

    Google Scholar 

  • Sala, O. E., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.

    Article  CAS  Google Scholar 

  • Salemaa, M., Mäkipää, R., & Oksanen, J. (2008). Differences in the growth response of three bryophyte species to nitrogen. Environmental Pollution, 152, 82–91.

    Article  CAS  Google Scholar 

  • Smart, S. M., Ashmore, M. R., Hornung, M., Scott, W. A., Fowler, D. A., Dragosits, U., et al. (2004). Detecting the signal of atmospheric N deposition in recent national-scale vegetation change across Britain. Water, Air and Soil Pollution: Focus, 4, 269–278.

    Article  CAS  Google Scholar 

  • Smith, R. I., Fowler, D., Sutton, M. A., Flechard, C., & Coyle, M. (2000). Regional estimation of pollutant gas dry deposition in the UK: Model description, sensitivity analyses and outputs. Atmospheric Environment, 34, 3757–3777.

    Article  CAS  Google Scholar 

  • Solga, A., & Frahm, J.-P. (2006). Nitrogen accumulation by six pleurocarpous moss species and their suitability for monitoring nitrogen deposition. Journal of Bryology, 28, 46–52.

    Article  Google Scholar 

  • Southon, G. E., Field, C. D., Caporn, S. J. M., Britton, A. J., & Power, S. A. (2013). Nitrogen deposition reduces plant diversity and alters ecosystem functioning: Field-scale evidence from a nationwide survey of UK heathlands. PLoS One, 8, e59031.

    Article  CAS  Google Scholar 

  • Stevens, C. J., Dise, N. B., Mountford, J. O., & Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879.

    Article  CAS  Google Scholar 

  • Stevens, C. J., Maskell, L. C., Smart, S. M., Caporn, S. J. M., Dise, N. B., & Gowing, D. J. (2009). Identifying indicators of atmospheric nitrogen deposition in acid grasslands. Biological Conservation, 142, 2069–2075.

    Article  Google Scholar 

  • Stevenson, A. C., & Thompson, D. B. A. (1993). Long-term changes in the extent of heather moorland in upland Britain and Ireland: Palaeoecological evidence for the importance of grazing. The Holocene, 3, 70–76.

    Article  Google Scholar 

  • Ter Braak, C., & Šmilauer, P. (1997–2004). CANOCO for Windows. Wageningen: Biometris-Plant Research.

    Google Scholar 

  • Thompson, D. B. A., MacDonald, A. J., Marsden, J. H., & Galbraith, C. A. (1995). Upland heather moorland in Great Britain: A review of international importance, vegetation change and some objectives for nature conservation. Biological Conservation, 71, 163–178.

    Article  Google Scholar 

  • Thimonier, A., Dupouey, J. L., & Timbal, J. (1992). Floristic changes in the herb-layer vegetation of a deciduous forest in the Lorraine Plain under the influence of atmospheric deposition. Forest Ecology and Management, 55, 149–167.

    Article  Google Scholar 

  • Van Dobben, H. F., ter Braak, C. J. F., & Dirkse, G. M. (1999). Undergrowth as a biomonitor for deposition of nitrogen and acidity in pine forest. Forest Ecology and Management, 114, 83–95.

    Article  Google Scholar 

  • Virtanen, R., Johnston, A. E., Crawley, M. J., & Edwards, G. R. (2000). Bryophyte biomass and species richness on the Park Grass Experiment, Rothamsted, UK. Plant Ecology, 151, 129–141.

    Article  Google Scholar 

  • Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385–397.

    Article  Google Scholar 

Download references

Acknowledgements

RJP, NBD and SJMC were supported by the UK Natural Environment Research Council through the European Union FP6 BiodivERsA (ERA-NET) project PEATBOG. Data collection was supported by DEFRA through the UKREATE and Terrestrial Umbrella programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Payne.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 141 kb)

Fig. S2

(PDF 184 kb)

Table S1

(PDF 22 kb)

Table S2

(PDF 19 kb)

Table S3

(PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payne, R.J., Caporn, S.J.M., Field, C.D. et al. Heather Moorland Vegetation and Air Pollution: A Comparison and Synthesis of Three National Gradient Studies. Water Air Soil Pollut 225, 1998 (2014). https://doi.org/10.1007/s11270-014-1998-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1998-6

Keywords

Navigation