Skip to main content
Log in

Arsenic Removal from Water by Sugarcane Bagasse: An Application of Response Surface Methodology (RSM)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Adsorption is one of the best methods for arsenic removal from water which is established in the last few decades. Biosorption by natural biosorbents and agricultural by-product is an environmental friendly approach and has proved to be a cost-effective and non-hazardous technology for the removal of heavy metals from water. This paper describes batch test findings conducted to evaluate the feasibility of using sugarcane bagasse (SCB) as an industrial by-product of sugar industry to remove arsenic (As) from water and compare the results with the efficiency of activated carbon (AC) for arsenic (As) removal. The effects of three parameters, such as pH, adsorbent dosage (C a), and initial metal concentration (C 0) on the adsorption of arsenic were evaluated by using response surface methodology (RSM). It is discovered that AC and SCB removed up to ~89 and ~98 % of arsenic, respectively. The uptake capacities yielded from the batch experiment were about 31.25 mg/g for AC at pH ~7.4 and 11.9 mg/g for SCB at pH ~9. The equilibrium times achieved were 120 and 150 min for SCB and AC, respectively. This study shows that SCB is an efficient low-cost biosorption for arsenic removal from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achaw, O. W. (2012). A study of the porosity of activated carbons using the scanning electron microscope, Scanning electron microscopy, Dr. Viacheslav Kazmiruk (Ed.), ISBN: 978-953-51-0092-8, InTech.

  • Akhtar, M., Hasany, S. M., Bhanger, M. I., & Iqbal, S. (2007). Low cost sorbents for the removal of methyl parathion pesticide from aqueous solutions. Chemosphere, 66, 1829–1838.

    Article  CAS  Google Scholar 

  • Akhter, H., Cartledge, F. K., Roy, A., & Tittlebaum, M. E. (1997). Solidification/stabilization of arsenic salts: effects of long cure times. Journal of Hazardous Materials, 52, 247–264.

    Article  CAS  Google Scholar 

  • Al-Khatib, L., Fraige, F., Al-Hwaiti, M., & Al-Khashman, O. (2012). Adsorption from aqueous solution onto natural and acid activated bentonite. American Journal of Environmental Science, 8, 510–522.

    Article  CAS  Google Scholar 

  • Altundogan, H. S., Altundogan, S., Tumen, F., & Bildik, M. (2002). Arsenic adsorption from aqueous solutions by activated red mud. Waste Management, 22, 357–363.

    Article  CAS  Google Scholar 

  • Amin, M. N., Kaneco, S., Kitagawa, T., Aleya, B., Katsumata, H., Suzuki, T., et al. (2006). Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Industrial and Engineering Chemistry Research, 45, 8105–8110.

    Article  CAS  Google Scholar 

  • Ayyappan, R., Sophia, C. A., Swaminathan, K., & Sandhya, S. (2005). Removal of Pb(II) from aqueous solution using carbon derived from agricultural wastes. Process Biochemistry, 40, 1293–1299.

    Article  CAS  Google Scholar 

  • Baskan, M. B., & Pala, A. (2011). Removal of arsenic from drinking water using modified natural zeolite. Desalination, 281, 396–403.

    Article  Google Scholar 

  • Biswas, B. K., Inoue, J., Inoue, K., Kedar Nath, G., Harada, H., Ohto, K., et al. (2008). Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel. Journal of Hazardous Materials, 154, 1066–1074.

    Article  CAS  Google Scholar 

  • Bodîrlău, R., & Teacă, C. A. (2009). Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. Romanian Journal of Physiology, 54(1–2), 93–104.

    Google Scholar 

  • Budinova, T., Petrov, N., Razvigorova, M., Parra, J., & Galiatsatou, P. (2006). Removal of arsenic(III) from aqueous solution by activated carbons prepared from solvent extracted olive pulp and olive stones. Industrial and Engineering Chemistry Research, 45, 1896–1901.

    Article  CAS  Google Scholar 

  • Budinova, T., Savova, D., Tsyntsarski, B., Ania, C. O., Cabal, B., Parra, J. B., et al. (2009). Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions. Applied Surface Science, 255, 4650–4657.

    Article  CAS  Google Scholar 

  • Cristina, R., Corrales, N. R., Magalhães, F., Mendes, T., Cruz Perrone, C., et al. (1989). Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2, N.L. Owen, D.W. Thomas, Infrared studies of “hard” and “soft” woods. Applied Spectroscopy, 43, 451–455.

    Article  Google Scholar 

  • Di Natale, F., Erto, A., Lancia, A., & Musmarra, D. (2008). Experimental and modelling analysis of As(V) ions adsorption on granular activated carbon. Water Research, 42, 2007–2016.

    Article  Google Scholar 

  • Eljamal, O., Sasaki, K., & Hirajima, T. (2011). Numerical simulation for reactive solute transport of arsenicin permeable reactive barrier column including zero-valent iron. Applied Mathematical Modelling, 35, 5198–5207.

    Article  Google Scholar 

  • Freundlich, H. (1906). Adsorption solution. Zeitschrift für Physikalische Chemie, 57, 384–470.

    Google Scholar 

  • Garg, U., Kaur, M. P., Jawa, G. K., Sud, D., & Garg, V. K. (2008). Removal of cadmium(II) from aqueous solutions by adsorption on agriculture waste biomass. Journal of Hazardous Materials, 154, 1149–1157.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Ali, I. (2000). Utilization of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Separation and Purification Technology, 18, 131–140.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Ali, I. (2001). Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Research, 35(1), 33–40.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Ali, I. (2004). Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. Journal of Colloid and Interface Science, 271, 321–328.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Mohan, D., & Sharma, S. (1998a). Removal of lead from wastewater using bagasse fly ash—a sugar industry waste material. Separation Science and Technology, 33(9), 1331–1343.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Sharma, S., Yadava, I. S., & Mohan, D. (1998b). Utilization of bagasse fly ash generated in sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater. Journal of Chemical Technology and Biotechnology, 71, 180–186.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Mohan, D., Sharma, S., & Park, K. T. (1999). Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ash—a sugar industry waste material. Environmentalist, 19(2), 129–136.

    Article  Google Scholar 

  • Gupta, V. K., Mohan, D., Sharma, S., & Sharma, M. (2000). Removal of basic dyes (rhodamine-B and methylene blue) from aqueous solutions using bagasse fly ash. Separation Science and Technology, 35(13), 2097–2113.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, C. K., Ali, I., Sharma, M., & Saini, V. K. (2003). Removal of cadmium and nickel from waste water using bagasse fly ash—a sugar industry waste. Water Research, 37, 4038–4044.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Ali, I., Saini, V. K., Gerven, T. V., Bruggen, B. V., & Vandecasteele, C. (2005). Removal of dyes from wastewater using bottom ash. Industrial and Engineering Chemistry Research, 44(11), 3655–3664.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Ali, I., Suhas, J. S., & Saini, V. K. (2006). Adsorption of 2,4-d and carbofuran pesticides using fertilizer and steel industry wastes. Journal of Colloid and Interface Science, 299(2), 556–563.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas, J. S. (2009). Low cost adsorbents: growing approach to wastewater treatment—a review. Critical Reviews in Environmental Science and Technology, 39, 783–842.

    Article  Google Scholar 

  • Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial and Engineering Chemistry Fundamentals, 5, 212–223. doi:10.1021/i160018a011.

    Article  CAS  Google Scholar 

  • Hergert, H. L. (1971). Infrared spectra. In K. V. Sarkanen & C. H. Ludwig (Eds.), Lignin: occurrence (pp. 267–297). New York: Formation, Structure and Reactions, Wiley.

    Google Scholar 

  • Irfan, M., Syed, Q., Abbas, S., Sher, M. G., Baig, S., & Nadeem, M. (2011). FTIR and SEM analysis of thermo-chemical fractionated sugarcane bagasse. Turkish Journal of Biochemistry-Turkish Journal of Biochemistry, 36(4), 322–328.

    CAS  Google Scholar 

  • Kamala, C. T., Chu, K. H., Chary, N. S., Pandey, P. K., Rameshd, S. L., Sastry, A. R. K., et al. (2005). Removal of arsenic (III) from aqueous solutions using fresh and immobilized plant biomass. Water Research, 39, 2815–2826.

    Article  CAS  Google Scholar 

  • Khoramzadeh, E., Nasernejad, B., & Halladj, R. (2013). Mercury biosorption from aqueous solutions by sugarcane bagasse. Journal of Taiwan Institute of Chemical Engineers, 44, 266–269.

    Article  CAS  Google Scholar 

  • Ladeira, A. C. Q., & Ciminelli, V. S. T. (2004). Adsorption and desorption of arsenic on an oxisol and its constituents. Water Research, 38(8), 2087–2094.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403. doi:10.1021/ja02242a004.

    Article  CAS  Google Scholar 

  • Lee, S. (2010). Application of activated carbon fiber (ACF) for arsenic removal in aqueous solution. Korean Journal of Chemical Engineering, 27, 110–115.

    Article  CAS  Google Scholar 

  • Maiti, A., Sharma, H., Basu, J. K., & De, S. (2009). Modeling of arsenic adsorption kinetics of synthetic and contaminated groundwater on natural laterite. Journal of Hazardous Materials, 117, 928–934.

    Article  Google Scholar 

  • Maji, S. K., Pal, A., & Pal, T. (2008). Arsenic removal from real-life groundwater by adsorption on laterite soil. Journal of Hazardous Materials, 151, 811–820.

    Article  CAS  Google Scholar 

  • Mane, V. S., Mall, I. D., & Srivastava, V. C. (2007). Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes and Pigments, 73, 269–278.

    Article  CAS  Google Scholar 

  • Manju, G. N., Raji, C., & Anirudhan, T. S. (1998). Evaluation of coconut husk carbon for the removal of arsenic from water. Water Research, 32(10), 3062–3070.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pitmann, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142, 1–53.

    Article  CAS  Google Scholar 

  • Mohan, D., & Singh, K. P. (2002). Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Research, 36, 2304–2318.

    Article  CAS  Google Scholar 

  • Murugesan, G. S., Sathishkumar, M., & Swaminathan, K. (2006). Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresource Technology, 97, 483–487.

    Article  CAS  Google Scholar 

  • Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: process and product optimization using designed experiments (2nd ed.). USA: John Wiley and Sons.

    Google Scholar 

  • Nasar, M., Emam, A., Sultan, M., & Abdel Hakim, A. A. (2010). Optimization and characterization of sugar-cane bagasse liquefaction process. Indian Journal of Science and Technology, 3(2), 0974–6846.

    Google Scholar 

  • Owen, N. L., & Thomas, D. W. (1989). Infrared studies of “hard” and “soft” woods, Appl. Spectroscopy 43, 451–455

  • Pandey, P. K., Choubey, S., Verma, Y., Pandey, M., & Chandrashekhar, K. (2009). Biosorptive removal of arsenic from drinking water. Bioresource Technology, 100, 634–637.

    Article  CAS  Google Scholar 

  • Pattanayak, J., Mondal, K., Mathew, S., & Lalvani, S. B. (2000). A parametric evaluation of the removal of As(V) and As(III) by carbon based adsorbents. Carbon, 38, 589–596.

    Article  CAS  Google Scholar 

  • Polowczyk, I., Bastrzyk, A., Koźlecki, T., Sawiński, W., Rudnicki, P., Sokołowski, A., et al. (2010). Use of fly ash agglomerates for removal of arsenic. Environmental Geochemistry and Health, 32, 361–366.

    Article  CAS  Google Scholar 

  • Rao, M., Parwate, A. V., & Bhole, A. G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Management, 22, 821–830.

    Article  CAS  Google Scholar 

  • Rao, M. M., Reddy, D. H. K. K., Venkateswarlu, P., & Seshaiah, K. (2009). Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. Journal of Environmental Management, 90, 634–643.

    Article  CAS  Google Scholar 

  • Rivera-Utrilla, J., Bautista-Toledo, I., Ferro- Garcy, M. A., & Moreno, C. (2001). Activated 1 carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology and Biotechnology, 76, 1209–1215.

    Article  CAS  Google Scholar 

  • Sahoo, C., & Gupta, A. K. (2012). Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach. Journal of Hazardous Materials, 215–216, 302–310.

    Article  Google Scholar 

  • Sari, A., Uluozlü, Ö. D., & Tüzen, M. (2011). Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Separation Science and Technology, 167, 155–161.

    CAS  Google Scholar 

  • Srivastava, S. K., Gupta, V. K., Johri, N., & Mohan, D. (1995a). Removal of 2,4,6-trinitrophenol using bagasse fly ash—a sugar industry waste material. Indian Journal of Chemical Technology, 2, 333–336.

    CAS  Google Scholar 

  • Srivastava, S. K., Gupta, V. K., Yadava, I. S., & Mohan, D. (1995b). Removal of 2,4-dinitrophenol using bagasse fly ash—a sugar industry waste material. Fresenius Environmental Bulletin, 4, 550–557.

    CAS  Google Scholar 

  • Trinh, T. K., & Kang, L. S. (2010). Application of response surface method as an experimental design to optimize coagulation tests. Environmental Engineering Research, 15, 063–070.

    Article  Google Scholar 

  • Urík, M., Littera, P., Ševc, J., Kolenčík, M., & Čerňanský, S. (2009). Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea abies): kinetics and isotherm studies. International Journal of Environmental Science and Technology, 6, 451–456.

    Article  Google Scholar 

  • Wang, J. P., Chen, Y. Z., Wang, Y., Yuan, S. J., & Yu, H. Q. (2011). Optimization of the coagulation–flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology. Water Research, 45, 5633–5640.

    Article  CAS  Google Scholar 

  • Wilopo, W., Sasaki, K., Hirajima, T., & Yamanaka, T. (2008). Immobilization of arsenic and manganese in contaminated groundwater by permeable reactive barriers using zero valent iron and sheep manure. Materials Transactions, 49, 2265–2274.

    Article  CAS  Google Scholar 

  • Zhang, J., Fu, D., Xu, Y., & Liu, C. (2010). Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 photocatalyst by response surface methodology. Journal of Environmental Sciences, 22, 1281–1289.

    Article  CAS  Google Scholar 

  • Zhu, H., Jia, Y., Wu, X., & Wang, H. (2009). 106. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172, 1591–1596.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Nasernejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajernia, H., Ebadi, T., Nasernejad, B. et al. Arsenic Removal from Water by Sugarcane Bagasse: An Application of Response Surface Methodology (RSM). Water Air Soil Pollut 225, 2028 (2014). https://doi.org/10.1007/s11270-014-2028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2028-4

Keyword

Navigation