Skip to main content
Log in

Optimization of Simultaneous Removal of Methylene Blue, Crystal Violet, and Fuchsine from Aqueous Solutions by Magnetic NaY Zeolite Composite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, the adsorbent, magnetic NaY zeolite was synthesized for simultaneous removal of three toxic cationic dyes, methylene blue, crystal violet, and fuchsine, from aqueous solutions. The influences of five dominant parameters of pH, temperature, time, initial dyes concentration, and adsorbent mass on dyes adsorption were investigated. The percentage of dye removal was mathematically described as a function of experimental parameters and was modeled through central composite design (CCD). According to the predicted experiments, optimum conditions of 10.3, 50 °C, 45 min, 10 mg L−1, and 46.2 mg, for pH, temperature, time, initial dyes concentration, and adsorbent mass were resulted, respectively. The maximum experimentally achieved dye removal percent of 98.4 ± 0.6, 98.1 ± 0.5, and 98.1 ± 0.3 were obtained, which were close to the percent of model dye removal prediction of 99.0, 98.6, and 98.4 for methylene blue, crystal violet, and fuchsine, respectively. This agreement showed that the central composite design model could ideally make an acceptable estimation of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali, I., & Gupta, V. (2007). Advances in water treatment by adsorption technology. Nature Protocols, 1, 2661–2667.

    Article  Google Scholar 

  • Alventosa-deLara, E., Barredo-Damas, S., Alcaina-Miranda, M., & Iborra-Clar, M. (2012). Ultrafiltration technology with a ceramic membrane for reactive dye removal: Optimization of membrane performance. Journal of Hazardous materials, 209, 492–500.

    Article  Google Scholar 

  • Alver, E., & Metin, A. Ü. (2012). Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chemical Engineering Journal, 200, 59–67.

    Article  Google Scholar 

  • Attia, A. A., Rashwan, W. E., & Khedr, S. A. (2006). Capacity of activated carbon in the removal of acid dyes subsequent to its thermal treatment. Dyes and Pigments, 69, 128–136.

    Article  CAS  Google Scholar 

  • Barquist, K., & Larsen, S. C. (2010). Chromate adsorption on bifunctional, magnetic zeolite composites. Microporous and Mesoporous Materials, 130, 197–202.

    Article  CAS  Google Scholar 

  • Benkli, Y., Can, M., Turan, M., & Celik, M. (2005). Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors. Water Research, 39, 487–493.

    Article  CAS  Google Scholar 

  • Bourlinos, A. B., Zboril, R., & Petridis, D. (2003). A simple route towards magnetically modified zeolites. Microporous and Mesoporous Materials, 58, 155–162.

    Article  CAS  Google Scholar 

  • Davis, M. E. (1991). Zeolites and molecular sieves: Not just ordinary catalysts. Industrial and Engineering Chemistry Research, 30, 1675–1683.

    Article  CAS  Google Scholar 

  • Doğan, M., Abak, H., & Alkan, M. (2008). Biosorption of methylene blue from aqueous solutions by hazelnut shells: Equilibrium, parameters and isotherms. Water, Air, and Soil Pollution, 192, 141–153.

    Article  Google Scholar 

  • Faghihian, H., Moayed, M., Firooz, A., & Iravani, M. (2013). Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: Kinetic, equilibrium, and thermodynamic studies. Journal of Colloid and Interface Science, 393, 445–451.

    Article  CAS  Google Scholar 

  • Fan, L., Luo, C., Sun, M., Li, X., Lu, F., & Qiu, H. (2012). Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresource Technology, 114, 703–706.

    Article  CAS  Google Scholar 

  • Fathima, N. N., Aravindhan, R., Rao, J. R., & Nair, B. U. (2008). Dye house wastewater treatment through advanced oxidation process using Cu-exchanged Y zeolite: a heterogeneous catalytic approach. Chemosphere, 70, 1146–1151.

    Article  CAS  Google Scholar 

  • Fungaro, D., Yamaura, M. & Carvalho, T. (2011) Adsorption of anionic dyes from aqueous solution on О zeolite from fly ash-iron oxide magnetic nanocomposite

  • Gözmen, B., Kayan, B., Gizir, A. M., & Hesenov, A. (2009). Oxidative degradations of reactive blue 4 dye by different advanced oxidation methods. Journal of Hazardous materials, 168, 129–136.

    Article  Google Scholar 

  • Kadik, A. A., Litvin, Y. A., Koltashev, V. V., Kryukova, E. B., Plotnichenko, V. G., Tsekhonya, T. I., & Kononkova, N. N. (2013). Solution behavior of reduced N–H–O volatiles in FeO–Na2O–SiO2–Al2O3 melt equilibrated with molten Fe alloy at high pressure and temperature. PEPI, 214, 14–24.

    CAS  Google Scholar 

  • Kalyani, K., Balasubramanian, N., & Srinivasakannan, C. (2009). Decolorization and COD reduction of paper industrial effluent using electro-coagulation. Chemical Engineering Journal, 151, 97–104.

    Article  CAS  Google Scholar 

  • Kannan, N., & Veemaraj, T. (2009). Removal of lead (II) ions by adsorption onto bamboo dust and commercial activated carbons—A comparative study. Journal of Chemistry, 6, 247–256.

    CAS  Google Scholar 

  • Khan, A. R., Tahir, H., Uddin, F. & Hameed, U. (2005) Adsorption of methylene blue from aqueous solution on the surface of wool fiber and cotton fiber

  • Larsen, S. C. (2007). Nanocrystalline zeolites and zeolite structures: Synthesis, characterization, and applications. The Journal of Physical Chemistry C, 111, 18464–18474.

    Article  CAS  Google Scholar 

  • Liu, H., Peng, S., Shu, L., Chen, T., Bao, T., & Frost, R. L. (2013). Magnetic zeolite NaA: Synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+. Chemosphere, 91, 1539–1546.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M., Salehi, R., & Arami, M. (2011). Binary system dye removal from colored textile wastewater using activated carbon: kinetic and isotherm studies. Desalination, 272, 187–195.

    Article  CAS  Google Scholar 

  • Mittal, A., Mittal, J., Malviya, A., Kaur, D., & Gupta, V. (2010). Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid and Interface Science, 343, 463–473.

    Article  CAS  Google Scholar 

  • Mohan, D., & Chander, S. (2006). Single, binary, and multicomponent sorption of iron and manganese on lignite. Journal of Colloid and Interface Science, 299, 76–87.

    Article  CAS  Google Scholar 

  • Morshedi, D., Mohammadi, Z., Akbar Boojar, M. M., & Aliakbari, F. (2013). Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process. Colloids and Surfaces B: Biointerfaces, 112, 245–254.

    Article  CAS  Google Scholar 

  • Nah, I. W., Hwang, K.-Y., Jeon, C., & Choi, H. B. (2006). Removal of Pb ion from water by magnetically modified zeolite. Minerals Engineering, 19, 1452–1455.

    Article  CAS  Google Scholar 

  • Nah, I. W., Hwang, K.-Y., & Shul, Y.-G. (2007). A simple synthesis of magnetically modified zeolite. Powder Technology, 177, 99–101.

    Article  CAS  Google Scholar 

  • Prasad, A. L., & Santhi, T. (2012). Adsorption of hazardous cationic dyes from aqueous solution onto Acacia nilotica leaves as an eco friendly adsorbent. Sustain Environ Res, 22, 113–122.

    CAS  Google Scholar 

  • Puzyn, T. (2012) Organic pollutants ten years after the Stockholm convention—environmental and analytical update. InTech, publication, 472.

  • Rosales, E., Pazos, M., Sanromán, M., & Tavares, T. (2012). Application of zeolite–arthrobacter viscosus system for the removal of heavy metal and dye: Chromium and azure B. Desalination, 284, 150–156.

    Article  CAS  Google Scholar 

  • Safarik, I., Ptackova, L., & Safarikova, M. (2002). ‘Adsorption of dyes on magnetically labeled baker’s yeast cells. Eur Cells Mater, 3, 52–55.

    Google Scholar 

  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13.

    Article  CAS  Google Scholar 

  • Sapawe, N., Jalil, A., Triwahyono, S., Shah, M., Jusoh, R., Salleh, N., Hameed, B. & Karim, A. (2013) Cost-effective microwave rapid synthesis of zeolite NaA for removal of methylene blue. Chem. Eng. J.

  • Schmidt, I., Madsen, C., & Jacobsen, C. J. (2000). Confined space synthesis. A novel route to nanosized zeolites. Inorganic Chemistry, 39, 2279–2283.

    Article  CAS  Google Scholar 

  • Sohrabnezhad, S., & Pourahmad, A. (2010). Comparison absorption of new methylene blue dye in zeolite and nanocrystal zeolite. Desalination, 256, 84–89.

    Article  CAS  Google Scholar 

  • Sudamalla, P., Saravanan, P., & Matheswaran, M. (2012). Optimization of operating parameters using response surface methodology for adsorption of crystal violet by activated carbon prepared from mango kernel. Environmental Research, 22, 1–7.

    CAS  Google Scholar 

  • Suteu, D., Zaharia, C., Bilba, D., Muresan, A., Muresan, R., & Popescu, A. (2009). Decolorization wastewaters from the textile industry—Physical methods, chemical methods. Indust Text, 60, 254–263.

    CAS  Google Scholar 

  • Torres-Pérez, J., Solache-Ríos, M., & Colín-Cruz, A. (2008). Sorption and desorption of Dye remazol yellow onto a Mexican surfactant-modified clinoptilolite-rich tuff and a carbonaceous material from pyrolysis of sewage sludge. Water, Air, and Soil Pollution, 187, 303–313.

    Article  Google Scholar 

  • Tosheva, L., & Valtchev, V. P. (2005). Nanozeolites: Synthesis, crystallization mechanism, and applications. Chemistry of Materials, 17, 2494–2513.

    Article  CAS  Google Scholar 

  • Wang, X. (2010). Invasive freshwater macrophyte alligator weed: novel adsorbent for removal of malachite green from aqueous solution. Water, Air, and Soil Pollution, 206, 215–223.

    Article  CAS  Google Scholar 

  • Wang, S., & Zhu, Z. (2006). Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution. Journal of Hazardous materials, 136, 946–952.

    Article  CAS  Google Scholar 

  • Wang, S., Li, H., Xie, S., Liu, S., & Xu, L. (2006a). Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment. Chemosphere, 65, 82–87.

    Article  CAS  Google Scholar 

  • Wang, S., Li, H., & Xu, L. (2006b). Application of zeolite MCM-22 for basic dye removal from wastewater. Journal of Colloid and Interface Science, 295, 71–78.

    Article  CAS  Google Scholar 

  • Wijannarong, S., Aroonsrimorakot, S., Thavipoke, P., & Sangjan, S. (2013). Removal of reactive dyes from textile dyeing industrial effluent by ozonation process. APCBEE Procedia, 5, 279–282.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate Dr. Andreas Metlen for the helpful discussions and indicative guidance during this research. The financial support of this project by Shahrekord University and Isfahan Payame Noor University is appreciated. The authors were also partially supported by the Center of Excellence for Mathematics, Shahrekord University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Semnani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirani, M., Semnani, A., Haddadi, H. et al. Optimization of Simultaneous Removal of Methylene Blue, Crystal Violet, and Fuchsine from Aqueous Solutions by Magnetic NaY Zeolite Composite. Water Air Soil Pollut 225, 2054 (2014). https://doi.org/10.1007/s11270-014-2054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2054-2

Keywords

Navigation