Skip to main content
Log in

Bioreduction of Chromate by an Isolated Bacillus anthracis Cr-4 with Soluble Cr(III) Product

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microbial Cr(VI) reduction is a significant process in detoxification of Cr(VI) pollution. In this study, a new Cr(VI)-reducing bacterial strain, Cr-4, was isolated from soil around the chromium-containing slag. The analysis of the 16S ribosomal RNA (rRNA) gene sequence revealed that the newly isolated strain was closely related to Bacillus anthracis. The response to Cr(VI) stress and reduction capacity of the isolate were investigated. Cell growth decreased with the increase of Cr(VI) concentration. Cell morphology varied and cell growth was inhibited remarkably in the presence of 125 mg/L Cr(VI). The strain grew well and removed Cr(VI) effectively at a Cr(VI) concentration lower than 50 mg/L. Cr(VI)-reducing activity was inhibited by Zn2+, while significantly stimulated by Cu2+. The activity of Cr(VI) reduction by cell-free extract was demonstrated. Total chromium analysis and the energy-dispersive X-ray analysis (EDAX) spectrum revealed that Cr(VI) removal was caused mainly by microbial reduction rather than by biosorption and the main part of the reduced Cr(III) existed as soluble form in solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe, F., Miura, T., Nagahama, T., Inoue, A., Usami, R., & Horikoshi, K. (2001). Isolation of a highly copper-tolerant yeast, Cryptococcus sp. from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnology Letters, 23(24), 2027–2034.

    Article  CAS  Google Scholar 

  • Accornero, M., Marini, L., & Lelli, M. (2010). Prediction of the thermodynamic properties of metal–chromate aqueous complexes to high temperatures and pressures and implications for the speciation of hexavalent chromium in some natural waters. Applied Geochemistry, 25(2), 242–260.

    Article  CAS  Google Scholar 

  • Ackerley, D. F., Gonzalez, C. F., Park, C. H., Blake, R., Keyhan, A., & Matin, A. (2004). Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Applied and Environmental Microbiology, 70(2), 873–882.

    Article  CAS  Google Scholar 

  • Camargo, F. A. O., Okeke, B. C., Bento, F. M., & Frankenberger, W. T. (2003). In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Applied Microbiology and Biotechnology, 62(5–6), 569–573.

    Article  CAS  Google Scholar 

  • Chardin, B., Giudici-Orticoni, M. T., De Luca, G., Guigliarelli, B., & Bruschi, M. (2003). Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Applied Microbiology and Biotechnology, 63(3), 315–321.

    Article  CAS  Google Scholar 

  • Chen, H., Li, X. J., & Xu, Z. W. (2011). Cr(VI) remediation by enriched sediment with anthraquinone-2,6-disulfonate as electron shuttles. Physics and Chemistry of the Earth, 36(9–11), 451–454.

    Article  Google Scholar 

  • Chen, Z., Huang, Z. P., Cheng, Y. J., Pan, D. M., Pan, X. H., Yu, M. J., et al. (2012). Cr(VI) uptake mechanism of Bacillus cereus. Chemosphere, 87(3), 211–216.

    Article  CAS  Google Scholar 

  • Cheung, K. H., & Gu, J. D. (2003). Reduction of chromate (CrO42-) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere, 52(9), 1523–1529.

    Article  CAS  Google Scholar 

  • Cirik, K., Dursun, N., Sahinkaya, E., & Cinar, O. (2013). Effect of electron donor source on the treatment of Cr(VI)-containing textile wastewater using sulfate-reducing fluidized bed reactors (FBRs). Bioresource Technology, 133, 414–420.

    Article  CAS  Google Scholar 

  • Contreras, E. M., Orozco, A. M. F., & Zaritzky, N. E. (2011). Biological Cr(VI) removal coupled with biomass growth, biomass decay, and multiple substrate limitation. Water Research, 45(10), 3034–3046.

    Article  CAS  Google Scholar 

  • Cummings, D. E., Fendorf, S., Singh, N., Sani, R. K., Peyton, B. M., & Magnuson, T. S. (2007). Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum. Environmental Science & Technology, 41(1), 146–152.

    Article  CAS  Google Scholar 

  • Desai, C., Jain, K., & Madamwar, D. (2008). Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochemistry, 43(7), 713–721.

    Article  CAS  Google Scholar 

  • Focardi, S., Pepi, M., Landi, G., Gasperini, S., Ruta, M., Di Biasio, P., et al. (2012). Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. International Biodeterioration & Biodegradation, 66(1), 63–70.

    Article  CAS  Google Scholar 

  • He, M. Y., Li, X. Y., Liu, H. L., Miller, S. J., Wang, G. J., & Rensing, C. (2011). Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. Journal of Hazardous Materials, 185(2–3), 682–688.

    Article  CAS  Google Scholar 

  • Kantar, C., Demiray, H., & Dogan, N. M. (2011). Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: II. Binding of Cr(III) in EPS/soil system. Chemosphere, 82(10), 1496–1505.

    Article  CAS  Google Scholar 

  • Lin, Z., Zhu, Y., Kalabegishvili, T. L., Tsibakhashvili, N. Y., & Holman, H. Y. (2006). Effect of chromate action on morphology of basalt-inhabiting bacteria. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 26(4), 610–612.

    Article  CAS  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1994). Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Applied and Environmental Microbiology, 60(2), 726–728.

    CAS  Google Scholar 

  • Mangaiyarkarasi, M. S. M., Vincent, S., Janarthanan, S., Rao, T. S., & Tata, B. V. R. (2011). Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi Journal of Biological Sciences, 18(2), 157–167.

    Article  CAS  Google Scholar 

  • Martins, M., Faleiro, M. L., Chaves, S., Tenreiro, R., Santos, E., & Costa, M. C. (2010). Anaerobic bio-removal of uranium (VI) and chromium (VI): comparison of microbial community structure. Journal of Hazardous Materials, 176(1–3), 1065–1072.

    Article  CAS  Google Scholar 

  • Michel, C., Brugna, M., Aubert, C., Bernadac, A., & Bruschi, M. (2001). Enzymatic reduction of chromate: comparative studies using sulfate reducing bacteria—key role of polyheme cytochromes c and hydrogenases. Applied Microbiology and Biotechnology, 55(1), 95–100.

    Article  CAS  Google Scholar 

  • Mistry, K., Desai, C., & Krishna, P. (2010). Chromate reduction by Vogococcus sp. isolated from Cr(VI) contaminated industrial effluent. Electronic Journal of Biology, 6(1), 6–12.

    Google Scholar 

  • Pagnanelli, F., Cruz Viggi, C., Cibati, A., Uccelletti, D., Toro, L., & Palleschi, C. (2012). Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol. Journal of Hazardous Materials, 199, 186–192.

    Article  Google Scholar 

  • Pal, A., Dutta, S., & Paul, A. K. (2005). Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Current Microbiology, 51(5), 327–330.

    Article  CAS  Google Scholar 

  • Romanenko, V. I., & Koreńkov, V. N. (1977). A pure culture of bacteria utilizing chromate and dichromate as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya, 46(3), 414–417.

    CAS  Google Scholar 

  • Sahinkaya, E., Altun, M., Bektas, S., & Komnitsas, K. (2012). Bioreduction of Cr(VI) from acidic wastewaters in a sulfidogenic ABR. Minerals Engineering, 32, 38–44.

    Article  CAS  Google Scholar 

  • Sau, G. B., Chatterjee, S., & Mukherjee, S. K. (2010). Chromate reduction by cell-free extract of Bacillus firmus KUCrl. Polish Journal of Microbiology, 59(3), 185–190.

    CAS  Google Scholar 

  • Sugiyama, T., Sugito, H., Mamiya, K., Suzuki, Y., Ando, K., & Ohnuki, T. (2012). Hexavalent chromium reduction by an actinobacterium Flexivirga alba ST13T in the family Dermacoccaceae. Journal of Bioscience and Bioengineering, 113(3), 367–371.

    Article  CAS  Google Scholar 

  • Sultan, S., & Hasnain, S. (2007). Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresource Technology, 98(2), 340–344.

    Article  CAS  Google Scholar 

  • Sultan, S., & Hasnain, S. (2012). Chromium (VI) reduction by cell free extract of Ochrobactrum anthropi isolated from tannery effluent. Bulletin of Environmental Contamination and Toxicology, 89(1), 152–157.

    Article  CAS  Google Scholar 

  • Thacker, U., Parikh, R., Shouche, Y., & Madamwar, D. (2007). Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresource Technology, 98(8), 1541–1547.

    Article  CAS  Google Scholar 

  • Wang, P. C., Mori, T., Toda, K., & Ohtake, H. (1990). Membrane-associated chromate reductase activity from Enterobacter cloacae. The Journal of Bacteriology, 172(3), 1670–1672.

    CAS  Google Scholar 

  • Xu, W. H., Liu, Y. G., Zeng, G. M., Li, X., Tang, C. F., & Yuan, X. Z. (2005). Enhancing effect of iron on chromate reduction by Cellulomonas flavigena. Journal of Hazardous Materials, 126(1–3), 17–22.

    Article  CAS  Google Scholar 

  • Xu, W. H., Liu, Y. G., Zeng, G. M., Li, X., Song, H. X., & Peng, Q. Q. (2009). Characterization of Cr(VI) resistance and reduction by Pseudomonas aeruginosa. Transactions of Nonferrous Metals Society of China, 19(5), 1336–1341.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51108167) and the Fundamental Research Funds for the Central Universities, Hunan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Hua Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WH., Jian, H., Liu, YG. et al. Bioreduction of Chromate by an Isolated Bacillus anthracis Cr-4 with Soluble Cr(III) Product. Water Air Soil Pollut 226, 82 (2015). https://doi.org/10.1007/s11270-015-2356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2356-z

Keywords

Navigation