Skip to main content
Log in

Stabilization and Management of Sulfate-Reducing Bioreactor Residues After Acid Mine Drainage Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Passive and semi-passive sulfate-reducing bioreactors (SRBRs) are attracting increasing attention worldwide for the treatment of contaminated mine effluents. This study focuses on the management of post-treatment residues from these bioreactors. The residues of two bioreactors with different medium compositions were studied after they were mixed with different alkaline amendments (25% biomass ash, 30% aluminum red mud, 10% lime kiln dust, or 15% hydroxyapatite). Weathering cell tests showed that aluminum red mud and Bedford lime kiln dust efficiently maintain the leachate at neutral pH (≥ 7.0) and immobilize some metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the post-treatment residues with average dissolved concentrations < 0.5 mg/L for all toxic metals, except for Mn, which are less than 3.2 mg/L. Column tests were also performed on the unamended post-treatment residues under unsaturated, saturated, and immersed conditions. The storage of the post-treatment SRBR residues under saturated and immersed conditions preserved the reducing conditions of the media and the neutrality of the leachate pH and also limited the leaching of metals retained by the bioreactor media.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Aachib, M., Mbonimpa, M., & Aubertin, M. (2004). Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water, Air, & Soil Pollution, 156(1), 163–193.

    Article  CAS  Google Scholar 

  • Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327–363.

    Article  CAS  Google Scholar 

  • Al-Abed, S. R., Jegadeesan, G., Purandare, J., & Allen, D. (2008). Leaching behavior of mineral processing waste: Comparison of batch and column investigations. Journal of Hazardous Materials, 153(3), 1088–1092.

    Article  CAS  Google Scholar 

  • Arnich, N., Lanhers, M. C., Laurensot, F., Podor, R., Montiel, A., & Burnel, D. (2003). In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite. Environmental Pollution, 124(1), 139–149.

    Article  CAS  Google Scholar 

  • ASTM. (1995). Standard test method for pH of soils. In: Annual book of ASTM standards. vol. 04.08, Washington, DC, USA, pp. 27–28.

  • ASTM. (1995). Standard test method for pH of soils. In: Annual book of ASTM standards. vol. 04.08, Washington, DC, USA, pp. 27–28

  • Autefage, H., Briand-Mésange, F., Cazalbou, S., Drouet, C., Fourmy, D., Gonçalvès, S., Salles, J. P., Combes, C., Swider, P., & Rey, C. (2009). Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/β-tricalcium phosphate porous ceramics. Journal of Biomedical Materials Research Part b: Applied Biomaterials, 91(2), 706–715.

    Article  CAS  Google Scholar 

  • Awoh, A.S. (2012). Étude expérimentale du comportement géochimique de résidus miniers hautement sulfureux sous un recouvrement en eau. PhD thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 256 p

  • Bailliez, S., Nzihou, A., Beche, E., & Flamant, G. (2004). Removal of lead (Pb) by hydroxyapatite sorbent. Process Safety and Environmental Protection, 82(2), 175–180.

    Article  CAS  Google Scholar 

  • Bekaert, É. (2004). Gestion des chlorures de métaux lourds: stabilisation d'un phosphate d'étain dans un vitrifiat silicaté. PhD thesis, Université de Lille 1, Lille, France, 245 p

  • Ben Ali, H. E., Neculita, C. M., Molson, J. W., Maqsoud, A., & Zagury, G. J. (2019). Efficiency of batch biochemical reactors for mine drainage treatment at low temperature and high salinity. Applied Geochemistry, 103, 40–49.

    Article  CAS  Google Scholar 

  • Benzaazoua, M., Fall, M., & Belem, T. (2004). A contribution to understanding the hardening process of cemented pastefill. Minerals Engineering, 17(2), 141–152.

    Article  CAS  Google Scholar 

  • Bertocchi, A. F., Ghiani, M., Peretti, R., & Zucca, A. (2006). Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn. Journal of Hazardous Materials, 134(1), 112–119.

    Article  CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.

    Article  CAS  Google Scholar 

  • Bouzahzah, H. (2013). Modification et amélioration des tests statiques et cinétiques pour une prédiction fiable et sécuritaire du drainage minier acide. PhD thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 276 p

  • Bouzahzah, H., Benzaazoua, M., Bussiere, B., & Plante, B. (2014). Prediction of acid mine drainage: Importance of mineralogy and the test protocols for static and kinetic tests. Mine Water and the Environment, 33(1), 54–65.

    Article  CAS  Google Scholar 

  • Bussière, B., Nicholson, R.V., Aubertin, M., & Benzaazoua, M. (1997). Evaluation of the effectiveness of covers built with desulfurized tailings for preventing acid mine drainage. Proceedings of the 50th Canadian Geotechnical Conference, Octobre 1997, Ottawa, ON, Canada, pp. 20–22

  • Calugaru, I.L. (2014). Modification des matériaux naturels et des résidus industriels et application à la rétention des métaux du drainage minier. MSc thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 127 p

  • Calugaru, I. L., Neculita, C. M., Genty, T., Bussière, B., & Potvin, R. (2016). Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage. Journal of Hazardous Materials, 310, 48–55.

    Article  CAS  Google Scholar 

  • Cao, R. X., Ma, L. Q., Chen, M., Singh, S. P., & Harris, W. G. (2003). Phosphate-induced metal immobilization in a contaminated site. Environmental Pollution, 122(1), 19–28.

    Article  CAS  Google Scholar 

  • Chen, M., Ma, L. Q., Singh, S. P., Cao, R. X., & Melamed, R. (2003). Field demonstration of in situ immobilization of soil Pb using P amendments. Advances in Environmental Research, 8(1), 93–102.

    Article  CAS  Google Scholar 

  • Chrysochoou, M., Dermatas, D., & GrTests-B, D. G. (2007). Phosphate application to firing range soils for Pb immobilization: The unclear role of phosphate. Journal of Hazardous Materials, 144(1), 1–14.

    Article  CAS  Google Scholar 

  • Collins, R. J., & Emery, J. J. (1983). Kiln dust-fly ash systems for highway bases and sub-bases. Report No. FHWA/RD-82/167, Federal Highway Administration, September 1983, Washington, DC, USA, 135 p.

  • Cruz, R., Mendez, B. A., Monroy, M., & González, I. (2001). Cyclic voltammetry applied to evaluate reactivity in sulfide mining residues. Applied Geochemistry, 16(14), 1631–1640.

    Article  CAS  Google Scholar 

  • Desjardins, M. E. (2007). Évaluation de la performance des barrières perméables réactives en utilisant des boues rouges. MSc thesis, Université Laval, Québec, QC, Canada, 156 p

  • Dijkstra, J. J., Van Der Sloot, H. A., & Comans, R. N. (2006). The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Applied Geochemistry, 21(2), 335–351.

    Article  CAS  Google Scholar 

  • Doye, I. (2005). Évaluation de la capacité de matériaux industriels alcalins à neutraliser des résidus et stériles miniers acides. MSc thesis, Université Laval, Québec, QC, Canada, 303 p

  • El Gheriany, I. A., Bocioaga, D., Hay, A. G., Ghiorse, W. C., Shuler, M. L., & Lion, L. W. (2009). Iron requirement for Mn(II) oxidation by Leptothrix discophora SS-1. Applied Environmental Microbiology, 75(5), 1229–1235.

    Article  CAS  Google Scholar 

  • Éthier, M. P. (2011). Évaluation du comportement géochimique en conditions normale et froides de différents stériles présents sur le site de la mine Raglan. MSc thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 237 p

  • Fuller, C., Bargar, J., & Davis, J. (2003). Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration. Environmental Science and Technology, 37(20), 4642–4649.

    Article  CAS  Google Scholar 

  • Genty, T., Bussière, B., Benzaazoua, M., Neculita, C. M., & Zagury, G. J. (2018). Changes in efficiency and hydraulic parameters during the passive treatment of ferriferous acid mine drainage in biochemical reactors. Mine Water and the Environment, 37(4), 686–695.

    Article  CAS  Google Scholar 

  • Genty, T., Bussière, B., Benzaazoua, M., & Zagury, G. J. (2012). Capacity of wood ash filters to remove iron from acid mine drainage: Assessment of retention mechanism. Mine Water and the Environment, 31(4), 273–286.

    Article  CAS  Google Scholar 

  • Gitari, W., Petrik, L., Etchebers, O., Key, D., & Okujeni, C. (2008). Utilization of fly ash for treatment of coal mines wastewater: Solubility controls on major inorganic contaminants. Fuel, 87(12), 2450–2462.

    Article  CAS  Google Scholar 

  • González-Corrochano, B., Alonso-Azcárate, J., & Rodas, M. (2009). Characterization of lightweight aggregates manufactured from washing aggregate sludge and fly ash. Resources Conservation and Recycling, 53(10), 571–581.

    Article  Google Scholar 

  • Graymont (2013). Rapport technique - De produits de chaux et de pierre de qualité qui améliores notre monde. Bedford and Marbleton, QC, Canada, 15 p

  • Greben, H. A., Baloyi, J., Sigama, J., & Venter, S. N. (2009). Bioremediation of sulphate rich mine effluents using grass cuttings and rumen fluid microorganisms. Journal of Geochemical Exploration, 100(2), 163–168.

    Article  CAS  Google Scholar 

  • Hébert, M., & Breton, B. (2008). Recyclage agricole des cendres de bois au Québec – État de la situation, impacts et bonnes pratiques agro-environnementales. Agro-Solution, 19, 18–33.

    Google Scholar 

  • Heviánková, S., Bestová, I., & Kyncl, M. (2014). The application of wood ash as a reagent in acid mine drainage treatment. Minerals Engineering, 56, 109–111.

    Article  CAS  Google Scholar 

  • Jouini, M., Neculita, C. M., Genty, T., & Benzaazoua, M. (2020). Environmental behavior of metal-rich residues from the passive treatment of acid mine drainage. Science of the Total Environment, 712, 136541.

    Article  CAS  Google Scholar 

  • Kastyuchik, A., Karam, A., & Aïder, M. (2016). Effectiveness of alkaline amendments in acid mine drainage remediation. Environmental Technology & Innovation, 6, 49–59.

    Article  Google Scholar 

  • Kribi, S. (2005). Décomposition des matières organiques et stabilisation des métaux lourds dans les sédiments de dragage. PhD thesis, INSA, Lyon, France, 224 p

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2007). Stabilization of Pb-and Cu-contaminated soil using coal fly ash and peat. Environmental Pollution, 145(1), 365–373.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management, 28(1), 215–225.

    Article  CAS  Google Scholar 

  • Lapointe, F. (2005). Potentiel d'utilisation du Bauxsol TM comme matériel réactif d'une barrière perméable pour contrôler le drainage minier acide. MSc thesis, Université Laval, Québec, QC, Canada, 70 p

  • Lawrence, R. (1990). Laboratory procedures for the prediction of long term weathering characteristics of mining wastes. Acid mine drainage: Designing for closure. In F. M. Doyle (Ed.), Western regional symposium on mining and mineral processing wastes (pp. 115–121). AIME/SME Publication.

    Google Scholar 

  • Lawrence, R.W., & Wang, Y. (1997). Determination of neutralization potential in the prediction of acid rock drainage. Proceedings of the Fourth International Conference on Acid Rock Drainage, Proc 4th Int Conf on Acid Rock Drainage, May 31 mai – June 6, 1997, Vancouver, BC, Canada, pp 451–464

  • Lefebvre-Drouet, E., & Rousseau, M. (1995). Dissolution de différents oxyhydroxydes de fer par voie chimique et par voie biologique: Importance des bactéries réductrices. Soil Biology and Biochemistry, 27(8), 1041–1050.

    Article  CAS  Google Scholar 

  • Lefticariu, L., Walters, E. R., Pugh, C. W., & Bender, K. S. (2015). Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: Field experiments. Applied Geochemistry, 63, 70–82.

    Article  CAS  Google Scholar 

  • Lewis, A. E. (2010). Review of metal sulphide precipitation. Hydrometallurgy, 104(2), 222–234.

    Article  CAS  Google Scholar 

  • Liu, Y., Naidu, R., & Ming, H. (2011). Red mud as an amendment for pollutants in solid and liquid phases. Geoderma, 163(1–2), 1–12.

    Article  CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., Zhang, G., Sun, B., Fitz, W., Zhang, H., & McGrath, S. P. (2002). In situ fixation of metals in soils using bauxite residue: Chemical assessment. Environmental Pollution, 118(3), 435–443.

    Article  CAS  Google Scholar 

  • Lopez, E., Soto, B., Arias, M., Nunez, A., Rubinos, D., & Barral, M. (1998). Adsorbent properties of red mud and its use for wastewater treatment. Water Research, 32(4), 1314–1322.

    Article  CAS  Google Scholar 

  • Lounate, K. (2019). Performance des matériaux alcalins pour prévenir la génération d’acidité et la mobilisation des métaux retenus par de nouveaux biofiltres semi-passifs sulfato-réducteurs utilisés pour le traitement du drainage minier acide. Ph.D. thesis, INRS-ETE, Québec, QC, Canada, 278 p

  • Lounate, K., Coudert, L., Genty, T., Mercier, G., & Blais, J.F. (2020a). Geochemical behavior and stabilization of spent sulfate-reducing biofilter mixtures for treatment of acid mine drainage. Science of the Total Environment 718, 137394

  • Lounate, K., Coudert, L., Genty, T., Mercier, G., & Blais, J. F. (2020b). Performance of a semi-passive sulfate-reducing bioreactor for acid mine drainage treatment and prediction of environmental behavior of post-treatment residues. Mine Water and the Environment, 39(4), 769–784.

    Article  CAS  Google Scholar 

  • Ma, Q. Y., Traina, S. J., Logan, T. J., & Ryan, J. A. (1994). In situ lead immobilization by apatite. Environmental Science and Technology, 27(9), 1803–1810.

    Article  Google Scholar 

  • Ma, Q. Y., Logan, T. J., & Traina, S. J. (1995). Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental Science and Technology, 29(4), 1118–1126.

    Article  CAS  Google Scholar 

  • Macías, F., Caraballo, M. A., Nieto, J. M., Rötting, T. S., & Ayora, C. (2012). Natural pretreatment and passive remediation of highly polluted acid mine drainage. Journal of Environmental Management, 104, 93–100.

    Article  CAS  Google Scholar 

  • Marchat, D. (2005). Fixation du cadmium par une hydroxyapatite phosphocalcique: Étude cinétique et thermodynamique. PhD thesis, Faculté des Sciences et Techniques, Université de Limoges, Limoges, France, 214 p

  • Masiá, A. T., Buhre, B., Gupta, R., & Wall, T. (2007). Characterising ash of biomass and waste. Fuel Processing Technology, 88(11), 1071–1081.

    Article  CAS  Google Scholar 

  • Mauric, A., & Lottermoser, B. G. (2011). Phosphate amendment of metalliferous waste rocks, Century Pb–Zn mine, Australia: Laboratory and field trials. Applied Geochemistry, 26(1), 45–56.

    Article  CAS  Google Scholar 

  • Mehling, P. E., Day, S. J., & Sexsmith, K. S. (1997). Blending and layering waste rock to delay, mitigate or prevent acid generation: A case review study. Proceedings of the Fourth International Conference on Acid Rock Drainage, vol II, May 30 mai – June 6, Vancouver, CB, Canada, pp 953–970

  • Melamed, R., Cao, X., Chen, M., & Ma, L. Q. (2003). Field assessment of lead immobilization in a contaminated soil after phosphate application. Science of the Total Environment, 305(1), 117–127.

    Article  CAS  Google Scholar 

  • Melanson, M. (2006). Analyse d’un système de traitement passif pour le site de la mine Eustis. MSc thesis, Université de Sherbrooke, Sherbrooke, QC, Canada, 69 p

  • Minh, D. P., Sebei, H., Nzihou, A., & Sharrock, P. (2012). Apatitic calcium phosphates: Synthesis, characterization and reactivity in the removal of lead (II) from aqueous solution. Chemical Engineering Journal, 198, 180–190.

    Article  CAS  Google Scholar 

  • Ministère de l’Environnement et de la Lutte contre les Changements Climatiques (2020). Guide de caractérisation des résidus miniers et du minerai (p. 52). Québec, QC, Canada. http://www.environnement.gouv.qc.ca/Industriel/secteur-minier/guidecaracterisation-minerai.pdf. Accessed Jun 2020

  • Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: A review. Environmental Chemistry Letters, 6(3), 121–133.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60(1–4), 193–207.

    Article  Google Scholar 

  • Nduwayezu, I. (2010). Adsorption et désorption du plomb dans un sol sablonneux traité par divers amendements. MSc thesis, Université du Québec à Montréal, Montréal, QC, Canada, 146 p

  • Neculita, C.M. (2008). Traitement biologique passif du drainage minier acide: Sources de carbone, mécanismes d'enlèvement des métaux et écotoxicité. PhD thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 244 p

  • Nielsen, G., Coudert, L., Janin, A., Blais, J. F., & Mercier, G. (2019). Influence of organic carbon sources on metal removals from mine impacted water using sulfate-reducing bacteria bioreactors in cold climates. Mine Water and the Environment, 38(1), 104–118.

    Article  CAS  Google Scholar 

  • Paradis, M., Duchesne, J., Lamontagne, A., & Isabel, D. (2006). Using red mud bauxite for the neutralization of acid mine tailings: A column leaching test. Canadian Geotechnical Journal, 43(11), 1167–1179.

    Article  CAS  Google Scholar 

  • Pérez-López, R., Nieto, J. M., & de Almodóvar, G. R. (2007). Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: Column experiments. Chemosphere, 67(8), 1637–1646.

    Article  CAS  Google Scholar 

  • Phillips, I. R. (1998). Use of soil amendments to reduce nitrogen, phosphorus and heavy metal availability. Journal of Soil Contamination, 7(2), 191–212.

    Article  CAS  Google Scholar 

  • Plante, B. (2010). Évaluation des principaux facteurs d’influence sur la prédiction du drainage neutre contaminé. PhD thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 271 p

  • Postgate, J. R., Kent, H. M., Robson, R. L., & Chesshyre, J. A. (1984). The genomes of Desulfovibrio gigas and D vulgaris. Microbiology, 130(7), 1597–1601.

    Article  CAS  Google Scholar 

  • Poulin, E., Blais, J. F., & Mercier, G. (2008). Transformation of red mud from aluminium industry into a coagulant for wastewater treatment. Hydrometallurgy, 92(1), 16–25.

    Article  CAS  Google Scholar 

  • Rakotonimaro, T. V., Neculita, C. M., Bussière, B., & Zagury, G. J. (2017). Comparative column testing of three reactive mixtures for the bio-chemical treatment of iron-rich acid mine drainage. Minerals Engineering, 111, 79–89.

    Article  CAS  Google Scholar 

  • Rakovan, J., Reeder, R. J., Elzinga, E. J., Cherniak, D. J., Tait, C. D., & Morris, D. E. (2002). Structural characterization of U (VI) in apatite by X-ray absorption spectroscopy. Environmental Science and Technology, 36(14), 3114–3117.

    Article  CAS  Google Scholar 

  • Ramlan, B., & Sheridan, C. (2015). The potential utilisation of indigenous South African grasses for acid mine drainage remediation. Water SA, 41(2), 247–252.

    Article  CAS  Google Scholar 

  • Rose, A. W., Parizek, R. R., & Phelps, L. B. (1995). Effectiveness of lime kiln flue dust in preventing acid mine drainage at the Kauffman Surface Coal Mine, Clearfield County, Pennsylvania. (No CONF-9506226-) National Meeting American Society for Surface Mining and Reclamation, June 5–8 , Gillette, Wyoming, USA, pp 159–171

  • Rose, A. W., Means, B., & Shah, P. J. (2003). Methods for passive removal of manganese from acid mine drainage. Procedings of the 24th West Virginia Surface Mine Drainage Task Force Symposium, (http://wvtaskforcecom/proceedings/2003cfm), August 1 2007, Virginia, USA, pp 71–82

  • Skousen, J., Zipper, C. E., Rose, A., Ziemkiewicz, P. F., Nairn, R., McDonald, L. M., & Kleinmann, R. L. (2017). Review of passive systems for acid mine drainage treatment. Mine Water and the Environment, 36(1), 133–153.

    Article  CAS  Google Scholar 

  • Sorrenti, E. (2007). Étude de la passivation de la pyrite: chimie de surface et réactivité. PhD thesis, Institut National de Polytechnique de Lorraine, Vandoeuvre-les-Nancy, France, 247 p

  • Strydom, C., Roode, Q., & Potgieter, J. (1996). Thermogravimetric and X-ray powder diffraction analysis of precipitator dust from a rotating lime kiln. Cement and Concrete Research, 26(8), 1269–1276.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry (3rd ed., p. 1022). Wiley and Sons.

    Google Scholar 

  • Sun, W., Nešić, S., & Woollam, R. C. (2009). The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit. Corrosion Science, 51(6), 1273–1276.

    Article  CAS  Google Scholar 

  • Tack, F., Lapauw, F., & Verloo, M. (1997). Determination and fractionation of sulphur in a contaminated dredged sediment. Talanta, 44(12), 2185–2192.

    Article  CAS  Google Scholar 

  • Takeuchi, Y., & Arai, H. (1990). Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder. Journal of Chemical Engineering of Japan, 23(1), 75–80.

    Article  CAS  Google Scholar 

  • Tang, H., Xin, T., & Wang, F. (2013). Calcium phosphate/titania sol-gel coatings on AZ31 magnesium alloy for biomedical applications International. Journal of Electrochemical Science, 8, 8115–8125.

    CAS  Google Scholar 

  • Thy, P., Jenkins, B., Grundvig, S., Shiraki, R., & Lesher, C. (2006). High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel, 85(5), 783–795.

    Article  CAS  Google Scholar 

  • Vasquez, Y., Escobar, M. C., Neculita, C. M., Arbeli, Z., & Roldan, F. (2016). Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity. Chemosphere, 153, 244–253.

    Article  CAS  Google Scholar 

  • Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933.

    Article  CAS  Google Scholar 

  • Villeneuve, M. (2004). Évaluation du comportement géochimique à long terme de rejets miniers à faible potentiel de génération d'acide à l'aide d'essais cinétiques. MSc thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 576 p

  • Wright, J., Rice, K.R., Murphy, B., & Conca, J. (2004). PIMS using Apatite II™: How it works to remediate soil and water. In: Sustainable range management, Proceeding of the Conference on Sustainable Range Management, January 5–8, New Orleans, Battelle Memorial Institute (Eds), Columbus, OH, USA, 8 p

  • Xenidis, A., Stouraiti, C., & Papassiopi, N. (2010). Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron. Journal of Hazardous Materials, 177(1), 929–937.

    Article  CAS  Google Scholar 

  • Zagury, G. J., Kulnieks, V. I., & Neculita, C. M. (2006). Characterization and reactivity assessment of organic substrates for sulfate-reducing bacteria in acid mine drainage treatment. Chemosphere, 64(6), 944–954.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Natural Sciences and Engineering Research Council of Canada (Grant RGPIN 2014–04794), the Canada Research Chair program (No. 950–232194), and CTRI (Rouyn-Noranda, Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Blais.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lounate, K., Mueller, K.K., Coudert, L. et al. Stabilization and Management of Sulfate-Reducing Bioreactor Residues After Acid Mine Drainage Treatment. Water Air Soil Pollut 232, 404 (2021). https://doi.org/10.1007/s11270-021-05325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05325-7

Keywords

Navigation