Skip to main content
Log in

Speciation Study on Pb in Different Particle Size Fractions by Sequential Extraction and XAFS Spectroscopy

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Changsha-Zhuzhou-Xiangtan is a heavy industry area in China. Many studies just focused on the basic contamination statues of heavy metals there; however, few of them had a deep study on chemical species in micro aggregate or samples with different particle sizes. This study focused on a comprehensive research of Pb in typical arable soil collected from Zhuzhou. Soil properties, particle size distributions, and Pb chemical species in different soil particles were investigated. Species of Pb were characterized by sequential extraction and X-ray absorption fine structure (XAFS) spectra. Little variance was shown on basic properties between different soil fractions, expect for mass distribution and Pb concentration. Sequential extraction results suggested that Pb species were similar in different soil fractions and about 90% of Pb species were consisted of carbonate binding, Fe/Mn oxide binding, and organic binding fraction. The percentage of water-soluble and exchangeable fraction Pb was less than 1%. XAFS was further applied to confirm the Pb chemical species. Results showed that the chemical species of Pb in soil were mainly consisted of PbSO4, Pb(OH)2, and PbO. However, 8.2% of Pb3O4 was presented in 250–53 μm fraction, which was different from other particle size fractions. The XAFS analysis suggested that the dominant chemical species was PbSO4 which was corresponding to the species of Fe/Mn oxide binding fraction in sequential extraction method. Pb(OH)2 was the secondary species that can be explained as carbonate and organic binding fraction. These combined results indicated that Pb in the studied soil was in a uniform, stable, and less bioavailability state within all particle sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Acosta, J. A., Faz, A., Kalbitz, K., Jansen, B., & Martinez-Martinez, S. (2011). Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment. Journal of Environmental Monitoring, 13, 3087–3096.

    Article  CAS  Google Scholar 

  • Barrett, J. E. S., Taylor, K. G., Hudson-Edwards, K. A., & Charnock, J. M. (2010). Solid-phase speciation of Pb in urban road dust sediment: A XANES and EXAFS study. Environmental Science and Technology, 44, 2940–2946.

    Article  CAS  Google Scholar 

  • Bellarbi, M., Rais, N., Elsass, F., Duplay, J., & Ijjaali, M. (2014). Speciation of Cr, Cu, Ni and Zn in soils irrigated with contaminated waters: A case study of agricultural soils from the plain of Saiss (Fez, Morocco). Environment and Earth Science, 73, 3465–3474.

    Article  CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Remdiation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.

    Article  CAS  Google Scholar 

  • Calmano, W., Mangold, S., & Welter, E. (2001). An XAFS investigation of the artefacts caused by sequential extraction analyses of Pb-contaminated soils. Fresenius Journal of Analytical Chemistry, 371, 823–830.

    Article  CAS  Google Scholar 

  • Chen, G., Zeng, G., Du, C., Huang, D., Tang, L., Wang, L., & Shen, G. (2010). Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions. Journal of Hazardous Materials, 181, 211–216.

    Article  CAS  Google Scholar 

  • Cheng, S. (2003). Heavy metal pollution in China: Origin, pattern and control. Environmental Science and Pollution Research, 10, 192–198.

    Article  CAS  Google Scholar 

  • Chu, G., Sun, Q., Li, S., Lin, Y., Wang, X., Xie, M., Shang, W., Li, A., & Yang, K. (2013). Minor element variations during the past 1300 years in the varved sediments of Lake Xiaolongwan, north-eastern China. GFF, 135, 265–272.

    Article  CAS  Google Scholar 

  • de Andrade Lima, L. R. P., & Bernardez, L. A. (2017). Characterization of the soil contamination around the former primary lead smelter at Santo Amaro, Bahia, Brazil. Environmental Earth Sciences, 76, 470.

    Article  CAS  Google Scholar 

  • Duan, D., Peng, C., Xu, C., Yu, M., Sun, L., Worden, N., Shi, J., & Hu, T. (2014). Lead phytoavailability change driven by its speciation transformation after the addition of tea polyphenols (TPs): Combined selective sequential extraction (SSE) and XANES analysis. Plant and Soil, 382, 103–115.

    Article  CAS  Google Scholar 

  • Eriksson, A. K., Gustafsson, J. P., & Hesterberg, D. (2015). Phosphorus speciation of clay fractions from long-term fertility experiments in Sweden. Geoderma, 241–242, 68–74.

    Article  CAS  Google Scholar 

  • Gankhurel, B., Fukushi, K., Akehi, A., Takahashi, Y., Zhao, X., & Kawasaki, K. (2020). Comparison of chemical speciation of lead, arsenic, and cadmium in contaminated soils from a historical mining site: Implications for different mobilities of heavy metals. ACS Earth and Space Chemistry, 4, 1064–1077.

    Article  CAS  Google Scholar 

  • Gong, C., Ma, L., Cheng, H., Liu, Y., Xu, D., Li, B., Liu, F., Ren, Y., Liu, Z., Zhao, C., Yang, K., Nie, H., & Lang, C. (2014). Characterization of the particle size fraction associated heavy metals in tropical arable soils from Hainan Island, China. Journal of Geochemical Exploration, 139, 109–114.

    Article  CAS  Google Scholar 

  • Grafe, M., Donner, E., Collins, R. N., & Lombi, E. (2014). Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: A critical review. Analytica Chimica Acta, 822, 1–22.

    Article  CAS  Google Scholar 

  • Haiyan, W., & Stuanes, A. (2003). Heavy metal pollution in air-water-soil-plant system of Zhuzhou City, Hunan Province, China. Water, Air, and Soil Pollution, 147, 79–107.

    Article  Google Scholar 

  • He, B., Wang, W., Geng, R., Ding, Z., Luo, D., Qiu, J., Zheng, G., & Fan, Q. (2021). Exploring the fate of heavy metals from mining and smelting activities in soil-crop system in Baiyin, NW China. Ecotoxicology and Environmental Safety, 207, 111234.

    Article  CAS  Google Scholar 

  • Huang, B., Yuan, Z., Li, D., Zheng, M., Nie, X., & Liao, Y. (2020). Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review. Environmental Science: Processes & Impacts, 22, 1596–1615.

    CAS  Google Scholar 

  • Itabashi, T., Li, J., Hashimoto, Y., Ueshima, M., Sakanakura, H., Yasutaka, T., Imoto, Y., & Hosomi, M. (2019). Speciation and fractionation of soil arsenic from natural and anthropogenic sources: Chemical extraction, scanning electron microscopy, and micro-XRF/XAFS investigation. Environmental Science and Technology, 53, 14186–14193.

    Article  CAS  Google Scholar 

  • Karim, Z., Qureshi, B. A., Mumtaz, M., & Qureshi, S. (2014). Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi—A multivariate spatio-temporal analysis. Ecological Indicators, 42, 20–31.

    Article  CAS  Google Scholar 

  • Khadhar, S., Sdiri, A., Chekirben, A., Azouzi, R., & Charef, A. (2020). Integration of sequential extraction, chemical analysis and statistical tools for the availability risk assessment of heavy metals in sludge amended soils. Environmental Pollution 114543.

  • Li, H., Wang, J., Wang, Q. G., Qian, X., Qian, Y., Yang, M., Li, F., Lu, H., & Wang, C. (2015). Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China. Atmospheric Environment, 103, 339–346.

    Article  CAS  Google Scholar 

  • Missana, T., Alonso, U., Scheinost, A. C., Granizo, N., & García-Gutiérrez, M. (2009). Selenite retention by nanocrystalline magnetite: Role of adsorption, reduction and dissolution/co-precipitation processes. Geochimica et Cosmochimica Acta, 73, 6205–6217.

    Article  CAS  Google Scholar 

  • Monclus, L., Shore, R. F., & Krone, O. (2020). Lead contamination in raptors in Europe: A systematic review and meta-analysis. Science of the Total Environment, 748, 141437.

    Article  CAS  Google Scholar 

  • Ohta, A. (2015). Speciation study of Cr in a geochemical reference material sediment series using sequential extraction and XANES spectroscopy. Geostandards and Geoanalytical Research, 39, 87–103.

    Article  CAS  Google Scholar 

  • O’Reilly, S. E., & Hochella, M. F. (2003). Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochimica et Cosmochimica Acta, 67, 4471–4487.

    Article  CAS  Google Scholar 

  • Paramasivam, K., Ramasamy, V., & Suresh, G. (2015). Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigai river, Tamilnadu, India. Spectrochimica Acta A, 137, 397–407.

    Article  CAS  Google Scholar 

  • Sakata, K., Sakaguchi, A., Tanimizu, M., Takaku, Y., Yokoyama, Y., & Takahashi, Y. (2014). Identification of sources of lead in the atmosphere by chemical speciation using X-ray absorption near-edge structure (XANES) spectroscopy. Journal of Environmental Sciences, 26, 343–352.

    Article  CAS  Google Scholar 

  • Shao, Y., Yang, G., Xu, D., Yamada, M., Tazoe, H., Luo, M., Cheng, H., Yang, K., & Ma, L. (2019). First report on global fallout 236U and uranium atom ratios in soils from Hunan Province,China. Journal of Environmental Radioactivity, 197, 1–8.

    Article  CAS  Google Scholar 

  • Sun, J., & Luo, L. (2014). A study on distribution and chemical speciation of lead in corn seed germination by synchrotron radiation X-ray fluorescence and absorption near edge structure spectrometry. Chinese Journal of Analytical Chemistry, 42, 1447–1452.

    Article  CAS  Google Scholar 

  • Tang, X., Li, X., Liu, X., Hashmi, M. Z., Xu, J., & Brookes, P. C. (2015). Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil. Chemosphere, 119, 177–183.

    Article  CAS  Google Scholar 

  • Teng, Y., Wu, J., Lu, S., Wang, Y., Jiao, X., & Song, L. (2014). Soil and soil environmental quality monitoring in China: A review. Environment International, 69, 177–199.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Wang, Z., Yao, L., Liu, G., & Liu, W. (2014). Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicology and Environmental Safety, 107, 200–206.

    Article  CAS  Google Scholar 

  • Wei, C., Ge, Z., Chu, W., & Feng, R. (2015). Speciation of antimony and arsenic in the soils and plants in an old antimony mine. Environmental and Experimental Botany, 109, 31–39.

    Article  CAS  Google Scholar 

  • Welter, E., Calmano, W., Mangold, S., & Troger, L. (1999). Chemical speciation of heavy metals in soils by use of XAFS spectroscopy and electron microscopical techniques. Fresenius Journal of Analytical Chemistry, 364, 238–244.

    Article  CAS  Google Scholar 

  • Xu, X., Zheng, G., Li, S., Takahashi, Y., Shen, G., & Dermatas, D. (2014). A quantitative XANES evaluation of the TCLP applicability in phosphate-induced lead stabilization for firing range soils. Environment and Earth Science, 73, 1641–1647.

    Article  CAS  Google Scholar 

  • Yang, J. L., & Zhang, G. L. (2015). Formation, characteristics and eco-environmental implications of urban soils-A review. Soil Science & Plant Nutrition, 61, 30–46.

    Article  CAS  Google Scholar 

  • Yang, J., Liu, J., Dynes, J. J., Peak, D., Regier, T., Wang, J., Zhu, S., Shi, J., & Tse, J. S. (2014). Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques. Environmental Science and Pollution Research, 21, 2943–2954.

    Article  CAS  Google Scholar 

  • Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690–700.

    Article  CAS  Google Scholar 

  • Yu, Y., Luo, H., He, L., Liu, W., Xu, R., Zhang, L., Dong, G., Wang, Y., Wu, G., & Wei, F. (2020). Level, source, and spatial distribution of potentially toxic elements in agricultural soil of typical mining areas in Xiangjiang River Basin, Hunan Province. International Journal of Environmental Research and Public Health, 17, 5794.

    Article  Google Scholar 

  • Zhang, G., Liu, F., Liu, H., Qu, J., & Liu, R. (2014). Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: An X-ray absorption spectroscopy investigation. Environmental Science and Technology, 48, 10316–10322.

    Article  CAS  Google Scholar 

  • Zhang, Y., Wang, X., & Ji, H. (2020). Stabilization process and potential of agro-industrial waste on Pb-Contaminated soil around Pb-Zn mining. Environmental Pollution, 260, 114069.

    Article  CAS  Google Scholar 

  • Zhang, Q., Zhang, F., & Huang, C. (2021). Heavy metal distribution in particle size fractions of floodplain soils from Dongchuan, Yunnan Province, Southwest China. Environmental Monitoring and Assessment, 193, 54.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the China Geological Survey (12120113002400) and National Natural Science Foundation of China (Grant Numbers: 11875266, U1932103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Lu, Y., Luo, M. et al. Speciation Study on Pb in Different Particle Size Fractions by Sequential Extraction and XAFS Spectroscopy. Water Air Soil Pollut 232, 440 (2021). https://doi.org/10.1007/s11270-021-05368-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05368-w

Keywords

Navigation