Skip to main content

Advertisement

Log in

Environmental Factors Influence the Effects of Biochar on the Bioavailability of Cd and Pb in Soil Under Flooding Condition

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biochar, as a sustainable amendment, effectively remediates soils contaminated with potentially toxic metals. However, the immobilization efficiencies of biochar can vary according to the soil properties. To investigate the critical impact factor of soil properties on the immobilization of cadmium (Cd) and lead (Pb) in soil by biochar, this study was conducted with an incubation batch experiment and a pot experiment by using an acid soil sample (soil A), a weakly acidic soil sample (soil B), and an alkaline soil sample (soil C). The results showed that the CaCl2-extracted Cd in the three soil samples was reduced by 15.2% (soil A), 44.3% (soil B), and 22.0% (soil C) with biochar application, and the decrease rate of the available Cd concentration is significantly negatively (P < 0.05) related with soil pH, cation exchange capacity, and the proportion of illite and illite–smectite mixed layers of clay minerals. Biochar significantly reduced the soil available Pb concentration of soil A, soil B, and soil C by 57.2%, 52.3%, and 40.3%, respectively. And the decreased rate of available Pb concentration is significantly negatively related to soil pH and soil organic materials (P < 0.05). The Cd concentration of rice shoots is positively related to the amount of iron plaque. Biochar application decreased the formation of iron plaque on rice roots grown in soils A and B due to the biochar slowing down the decreasing trend of the redox potential during flooding. However, biochar increased the amount of iron plaque on rice roots grown in soil C, which had a higher pH. As a result, biochar reduced the accumulation of Cd and Pb in rice shoots and promoted the biomass of rice grown in soils A and B (acid soils) but had the opposite effect on soil C (an alkaline soil).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data is available by request to the corresponding author.

References

  • Ahmad, M., Lee, S. S., Lim, J. E., Lee, S. E., Cho, J. S., Moon, D. H., Hashimoto, Y., & Ok, Y. S. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere, 95, 433–441.

    Article  CAS  Google Scholar 

  • An, X., Wu, Z., Liu, X., Shi, W., Tian, F., & Yu, B. (2021). A new class of biochar-based slow-release phosphorus fertilizers with high water retention based on integrated co-pyrolysis and co-polymerization. Chemosphere, 285, 131481.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth Science Reviews, 171, 621–645.

    Article  CAS  Google Scholar 

  • Azeem, M., Ali, A., Arockiam, J., Bashir, S., Hussain, Q., Wahid, F., Ali, E. F., Abdelrahman, H., Li, R., Antoniadis, V., Rinklebe, J., Shaheen, S. M., Li, G., & Zhang, Z. (2021). Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil. Chemosphere, 282, 131016.

    Article  CAS  Google Scholar 

  • Azhar, M., Zia, U., Rehman, M., Ali, S., Qayyum, M. F., Naeem, A., Ayub, M. A., Anwar, U. M., Iqbal, A., & Rizwan, M. (2019). Comparative effectiveness of different biochars and conventional organic materials on growth, photosynthesis and cadmium accumulation in cereals. Chemosphere, 227, 72–81.

    Article  CAS  Google Scholar 

  • Batty, L. C., Baker, A. J. M., Wheeler, B. D., & Curtis, C. D. (2000). The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. Steudel. Annals of Botany-London, 86, 647–653.

    Article  CAS  Google Scholar 

  • Beiyuan, J., Awad, Y. M., Beckers, F., Wang, J., Tsang, D. C. W., Ok, Y. S., Wang, S. L., Wang, H., & Rinklebe, J. (2020). (Im)mobilization and speciation of lead under dynamic redox conditions in a contaminated soil amended with pine sawdust biochar. Environment International, 135, 105376.

    Article  CAS  Google Scholar 

  • Bian, R., Chen, D., Liu, X., Cui, L., Li, L., Pan, G., Xie, D., Zheng, J., Zhang, X., Zheng, J., & Chang, A. (2013). Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment. Ecological Engineering, 58, 378–383.

    Article  Google Scholar 

  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, L. R., Torre, A. L., & Ahmedin, D. V. M. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394–424.

    Google Scholar 

  • Cao, X. D., Ma, L. N., Liang, Y., Gao, B., & Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science and Technology, 45, 4884–4889.

    Article  CAS  Google Scholar 

  • Chen, X. P., Kong, W. D., He, J. Z., Liu, W. J., Smith, S. E., Smith, F. A., & Zhu, Y. G. (2008). Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice? Journal of Plant Nutrition and Soil Science, 171, 193–199.

    Article  CAS  Google Scholar 

  • Cheng, H., Wang, M. Y., Wong, M. H., & Ye, Z. H. (2014). Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues? Plant and Soil, 375, 137–148.

    Article  CAS  Google Scholar 

  • Du, L. G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407, 3972–3985.

    Article  Google Scholar 

  • Elbana, T. A., Magdi, S. H., Akrami, N., Newman, A., Shaheen, S. M., & Rinklebe, J. (2018). Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics. Geoderma, 324, 80–88.

    Article  CAS  Google Scholar 

  • Elbana, T. A., & Selim, H. M. (2019). Modeling of cadmium and nickel release from different soils. Geoderma, 338, 78–87.

    Article  CAS  Google Scholar 

  • Frommer, J., Voegelin, A., Dittmar, J., Marcus, M. A., & Kretzschmar, R. (2011). Biogeochemical processes and arsenic enrichment around rice roots in paddy soil: Results from micro-focused X-ray spectroscopy. European Journal of Soil Science, 62, 305–317.

    Article  Google Scholar 

  • Gupta, S. S., & Bhattacharyya, K. G. (2006). Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly (oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials, 128, 247–257.

    Article  Google Scholar 

  • Hamid, Y., Tang, L., Hussain, B., Usman, M., Liu, L., Cao, X., Ulhassan, Z., Bilal Khan, M., & Yang, X. (2020). Cadmium mobility in three contaminated soils amended with different additives as evaluated by dynamic flow-through experiments. Chemosphere, 261, 127763.

    Article  CAS  Google Scholar 

  • He, H. P., Guo, J. G., & Zhu, J. X. (2001). An experimental study of adsorption capacity of montmorillonite, kaolinite and illite for heavy metals. Acta Mineralogica Et Petrologica, 20, 573–578.

    CAS  Google Scholar 

  • Hooda, P. S. (2010). Trace Elements in Soils. Wiley.

    Book  Google Scholar 

  • Huang, G., Ding, X., Liu, Y., Ding, M., Wang, P., Zhang, H., Nie, M., & Wang, X. (2022). Liming and tillering application of manganese alleviates iron manganese plaque reduction and cadmium accumulation in rice (Oryza sativa L.). Journal of Hazardous Materials, 427,127897.

  • Jackson, M. L. (1979). Soil chemical analysis: Advanced course (2nd ed.). University of Wisconsin.

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. CRC Press.

    Google Scholar 

  • Kim, H. S., Kim, K. R., Kim, H. J., Yoon, J. H., Yang, J. E., Ok, Y. S., Owens, G., & Kim, K. H. (2015). Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environment and Earth Science, 74, 1249–1259.

    Article  CAS  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota – a review. Soil Biology and Biochemistry, 43, 1812–1836.

    Article  CAS  Google Scholar 

  • Li, H., Liu, Y., Chen, Y., Wang, S., Wang, M., Xie, T., & Guo, W. (2016). Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Scientific Reports-Uk, 6, 31616.

    Article  CAS  Google Scholar 

  • Li, H., Yu, Y., Chen, Y., Li, Y., Wang, M., & Wang, G. (2018). Biochar reduced soil extractable Cd but increased its accumulation in rice (Oryza sativa L.) cultivated on contaminated soils. Journal of Soils and Sediments, 19, 862–871.

    Article  Google Scholar 

  • Li, H., Meng, J., Liu, Z., Lan, Y., Yang, X., Huang, Y., He, T., & Chen, W. (2021). Effects of biochar on N2O emission in denitrification pathway from paddy soil: A drying incubation study. Science of the Total Environment, 787, 147591.

    Article  CAS  Google Scholar 

  • Liu, H. J., Zhang, J. L., Christie, P., & Zhang, F. S. (2008). Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment, 394, 361–368.

    Article  CAS  Google Scholar 

  • Liu, P., Rao, D., Zou, L., Teng, Y., & Yu, H. (2021). Capacity and potential mechanisms of Cd(II) adsorption from aqueous solution by blue algae-derived biochars. Science of the Total Environment, 767, 145447.

    Article  CAS  Google Scholar 

  • Nan, H., Yin, J., Yang, F., Luo, Y., Zhao, L., & Cao, X. (2021). Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration. Environmental Pollution, 287, 117566.

    Article  CAS  Google Scholar 

  • National Bureau of Statistics of China. (2020). China statistic yearbook. China Statistics Press, Beijing.

  • Omdi, F. E., Daoudi, L., & Fagel, N. (2018). Origin and distribution of clay minerals of soils in semi-arid zones: Example of Ksob watershed (Western High Atlas, Morocco). Applied Clay Science, 163, 81–91.

    Article  CAS  Google Scholar 

  • Otunola, B. O., & Ololade, O. O. (2020). A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environmental Technology & Innovation, 18, 100692.

    Article  Google Scholar 

  • Rajendran, M., Shi, L., Wu, C., Li, W., An, W., Liu, Z., & Xue, S. (2019). Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Chemosphere, 222, 314–322.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Franke, C., & Neue, H. U. (2007). Aggregation of floodplain soils based on classification principles to predict concentrations of nutrients and pollutants. Geoderma, 141, 210–223.

    Article  CAS  Google Scholar 

  • Secretan, P. H., Karoui, M., Levi, Y., Sadou Yaye, H., Tortolano, L., Solgadi, A., Yagoubi, N., & Do, B. (2018). Pemetrexed degradation by photocatalytic process: Kinetics, identification of transformation products and estimation of toxicity. Science of the Total Environment, 624, 1082–1094.

    Article  CAS  Google Scholar 

  • Shaheen, S. M. (2009). Sorption and lability of cadmium and lead in different soils from Egypt and Greece. Geoderma, 153, 61–68.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Frohne, T., White, J. R., DeLaune, R. D., & Rinklebe, J. (2017). Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management. Journal of Environmental Management, 186, 131–140.

    Article  CAS  Google Scholar 

  • Shangguan, Y. X., Qin, Y., Yu, H., Chen, K., Wei, Y., Zeng, X., Zhou, Z., Guo, S., & He, S. (2019). Lime application affects soil cadmium availability and microbial community composition in different soils. Clean - Soil Air Water, 47, 1800416.

    Article  Google Scholar 

  • Siddique, A. B., Rahman, M. M., Islam, M. R., & Naidu, R. (2022). Influences of soil pH, iron application and rice variety on cadmium distribution in rice plant tissues. Science of the Total Environment, 810, 152296.

    Article  CAS  Google Scholar 

  • Sun, T., Hu, Y., Wang, Z., Xia, W., Lv, Q., Wang, Y., Fang, P., & Xu, P. (2021). A tissue atlas of cadmium accumulation and the correlation with thiol-containing chelates in zucchini provide insights into cadmium partitioning and food safety. Journal of Hazardous Materials, 421, 126756.

    Article  Google Scholar 

  • Sun, T., Xu, Y., Sun, Y., Wang, L., Liang, X., & Zheng, S. (2021). Cd immobilization and soil quality under Fe-modified biochar in weakly alkaline soil. Chemosphere, 280, 130606.

    Article  CAS  Google Scholar 

  • Wang, Z. Y., Liu, G. C., Zheng, H., Li, F. M., Ngo, H. H., Guo, W. S., Liu, C., Chen, L., & Xing, B. S. (2015). Investigating the mechanisms of biochar’s removal of lead from solution. Bioresource Technology, 177, 308–317.

    Article  CAS  Google Scholar 

  • Wagner, A., Martin, K. M., Hu, Y. F., Kruse, J., Jens, K. J., & Leinweber, P. (2015). Biochar induced formation of Zn–P-phases in former sewage field soils studied by P K-edge XANES spectroscopy. Journal of Plant Nutrition and Soil Science, 178, 582–585.

    Article  CAS  Google Scholar 

  • Weil, R. R., & Brady, N. C. (2017). The nature and properties of soils, 15th edn. Pearson Education Limited, USA.

  • Xie, T., Li, Y., Dong, H., Liu, Y., Wang, M., & Wang, G. (2019). Effects and mechanisms on the reduction of lead accumulation in rice grains through lime amendment. Ecotoxicology and Environmental Safety, 173, 266–272.

    Article  CAS  Google Scholar 

  • Xu, C., Chen, H. X., Xiang, Q., Zhu, H. H., Wang, S., Zhu, Q. H., Huang, D. Y., & Zhang, Y. Z. (2018). Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system. Environmental Science and Pollution Research, 25, 1147–1156.

    Article  CAS  Google Scholar 

  • Yamaguchi, N., Ohkura, T., Takahashi, Y., Maejima, Y., & Arao, T. (2014). Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environmental Science and Technology, 48, 1549–1556.

    Article  CAS  Google Scholar 

  • Yang, X., Liu, J. J., McGrouther, K., Huang, H. G., Lu, K. P., Guo, X., He, L. Z., Lin, X. M., Che, L., Ye, Z. Q., & Wang, H. L. (2016). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23, 974–984.

    Article  CAS  Google Scholar 

  • Yang, X., Pan, H., Shaheen, S. M., Wang, H., & Rinklebe, J. (2021). Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil. Environment International, 156, 106628.

    Article  CAS  Google Scholar 

  • Zeng, G., Wan, J., Huang, D., Hu, L., Huang, C., Cheng, M., Xue, W., Gong, X., Wang, R., & Jiang, D. (2017). Precipitation, adsorption and rhizosphere effect: The mechanisms for phosphate-induced Pb immobilization in soils—a review. Journal of Hazardous Materials, 339, 354–367.

    Article  CAS  Google Scholar 

  • Zhang, C., Shan, B. Q., Tang, W. Z., & Zhu, Y. Y. (2017). Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere. Bioresource Technology, 238, 352–360.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z., & McGrath, S. P. (2015). Soil contamination in China: Current status and mitigation strategies. Environmental Science and Technology, 49, 750–759.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jiakang Zhang, Yaling Zhuang and Liwen Zhang for their experimental cooperation.

Funding

This study was funded by the Natural Science Foundation of Fujian Province (grant no. 2021J05200).

Author information

Authors and Affiliations

Authors

Contributions

HHL: Conceptualization, data curation, investigation, writing-original draft, visualization, funding acquisition. ZL: writing-review & editing. LMH: investigation. XMM: investigation. YXD: investigation. SLF: investigation. RS: writing-review. YHC: investigation. CZ: writing-review.

Corresponding author

Correspondence to Honghong Li.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publication

All the authors have given their consent to publish this study.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2503 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, Z., Huang, L. et al. Environmental Factors Influence the Effects of Biochar on the Bioavailability of Cd and Pb in Soil Under Flooding Condition. Water Air Soil Pollut 234, 100 (2023). https://doi.org/10.1007/s11270-023-06130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06130-0

Keywords

Navigation