Skip to main content

Advertisement

Log in

Antimicrobial, antioxidant, and antiviral activities of Retama raetam (Forssk.) Webb flowers growing in Tunisia

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Antimicrobial, antioxidant, and antiviral activities of flower extracts of Retama raetam Forssk. Webb (Fabaceae) were screened both from standard and isolated Gram-positive and Gram-negative bacteria by solid medium technique. Oxacillin, Amoxicillin, Ticarcillin, Cefotaxim, and Amphotericin were used as the control agents. The antiviral activity was evaluated against human cytomegalovirus (HCMV) strain AD-169 (ATCC Ref. VR 538) and coxsackie B virus type 3 (CoxB-3) using a cytopathic effect (CPE) reduction assay. The antioxidant activity was evaluated using two tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical scavenging and the ammonium thiocyanate methods. All extracts were characterized quantitatively for the presence of polyphenols, flavonoids, and tannins. Of the extracts tested, butanol and ethyl acetate extracts showed important antibacterial activity against Gram-positive and Gram-negative bacteria but only moderate antifungal activity. Methanol extract exhibited moderate antiviral activity against HCMV with IC50 of 250 μg/ml. Ethyl acetate, chloroform, and methanol fractions were found to cause significant free-radical-scavenging effects in both assays. These results may suggest that R. raetam flowers could be used as a natural preservative ingredient in the food and/or pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel Halim OB, Abdel Fattah H, Halim AF et al (1997) Comparative chemical and biological studies of the alkaloidal content of Lygos species and varieties growing in Egypt. Acta Pharm Hung 67:241–247

    CAS  Google Scholar 

  • Archer S, Pyke DA (1991) Plant animal interactions affecting plant establishment and persistence on revegetated rangelands. J Range Manage 44:558–565. doi:10.2307/4003036

    Article  Google Scholar 

  • Ashok BT, Ali R (1999) The aging paradox: free radical theory of aging. Exp Gerontol 34:293–303. doi:10.1016/S0531-5565(99)00005-4

    Article  CAS  Google Scholar 

  • Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328. doi:10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  • Caceres A, Giron LM, Martinez AM (1987) Diuretic activity of plants used for the treatments of urinary ailments in Guatemaela. J Ethnopharmacol 43:197–201

    Google Scholar 

  • Cassady JM, Baird WM, Chang CJ (1990) Natural products as a source of potential cancer chemotherapeutic and chemopreventive agents. J Nat Prod 53:23–41. doi:10.1021/np50067a003

    Article  CAS  Google Scholar 

  • Cheng HY, Lin CC, Lin TC (2002) Antiherpes simplex virus type 2 activity of casuarinin from the bark of Terminalia arjuna Linn. Antiviral Res 55:447–455. doi:10.1016/S0166-3542(02)00077-3

    Article  CAS  Google Scholar 

  • ChidambaraMurthy KNC, Singh RP, Jayaprakasha GK (2002) Antioxidant activity of grape (Vitis vinifera) pomace extracts. J Agric Food Chem 50:5909–5914. doi:10.1021/jf0257042

    Article  CAS  Google Scholar 

  • Cowan MM (1999) Plant product as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  Google Scholar 

  • Cuendet M, Hostettmann K, Potterat O (1997) Iridoid glucoside with free radical scavenging properties from Fagraea blumei. Helv Chim Acta 80:1144–1152. doi:10.1002/hlca.19970800411

    Article  CAS  Google Scholar 

  • Czinner E, Hagymasi K, Blazovics A et al (2000) In vitro antioxidant properties of Helichrysum arenarium (L.) Moench. J Ethnopharmacol 73:437–443. doi:10.1016/S0378-8741(00)00304-4

    Article  CAS  Google Scholar 

  • Dewanto V, Wu X, Adom KK et al (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014. doi:10.1021/jf0115589

    Article  CAS  Google Scholar 

  • El Bahri L, Djegham M, Bellil H (1999) Retama raetam W: a poisonous plant of North Africa. Vet Hum Toxicol 41:33–35

    CAS  Google Scholar 

  • Falleh H, Ksouri R, Chaieb K et al (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C. R. Biol 331:372–379. doi:10.1016/j.crvi.2008.02.008

    Article  CAS  Google Scholar 

  • Frankel EN (1991) Recent advances in lipid oxidation. J Sci Food Agric 54:495–511. doi:10.1002/jsfa.2740540402

    Article  CAS  Google Scholar 

  • Frankel EN, German JB, Kinsella JE, Parks E, Kanner J (1993) Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341:454–457

    Article  CAS  Google Scholar 

  • Fukuchi K, Sakagami H, Okuda T et al (1989) Inhibition of herpes simplex virus infection by tannins and related compounds. Antiviral Res 11:285–289. doi:10.1016/0166-3542(89)90038-7

    Article  CAS  Google Scholar 

  • Ghosh T, Maity TK, Bose A et al (2007) Antimicrobial activity of various fractions of ethanol extract of Bacopa monnieri Linn. Aerial parts. Indian J Pharm Sci 69(2):312–314

    Article  Google Scholar 

  • Gordon MH (1990) The mechanism of antioxidant action in vitro. In: Hudson BJF (ed) Food antioxidants. Elsevier Applied Science, New York

    Google Scholar 

  • Gould GW (1995) Homeostatic mechanisms during food preservation by combined methods. In: Barbosa-Canovas G, Welti-Chanes J (eds) Food preservation by moisture control. Techromic Publishing Co., Inc, Lancaster

    Google Scholar 

  • Harborne JB (1974) Chemistry of natural products—VIII: Edited by T. R. Govindachari. Butterworth, London, 1973. 177 pp. £5.25; Phytochemistry 13:311–312

  • Ignarro LJ, Cirino G, Casini A et al (1999) Nitric oxide as a signaling molecule in the vascular system: an overview. J Card Pharm 34:879–886. doi:10.1097/00005344-199912000-00016

    Article  CAS  Google Scholar 

  • Izhaki I, Neeman G (1997) Hares (Lepus spp.) as seed dispersers of Retama raetam (Fabaceae) in a sandy landscape. J Arid Environ 37:343–354. doi:10.1006/jare.1997.0273

    Article  Google Scholar 

  • Kassem M, Mosharrafa S, Saleh N (2000) Two new flavonoids from Retama raetam. Fitoterapia 71:649–654. doi:10.1016/S0367-326X(00)00224-0

    Article  CAS  Google Scholar 

  • Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R, Popov S (1999) Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol 64:235–240

    Article  CAS  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose–effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  Google Scholar 

  • Lu Y, Foo YL (2001) Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem 75:197–202. doi:10.1016/S0308-8146(01)00198-4

    Article  CAS  Google Scholar 

  • Mangiapane H, Thompson J, Brown S et al (1992) The inhibition of LDL oxidation by naturally occurring flavonoids. Biochem Pharmacol 43:445–452. doi:10.1016/0006-2952(92)90562-W

    Article  CAS  Google Scholar 

  • Mattocks AR (1986) Chemistry and toxicology of pyrrolizidine alkaloids. Academic Press, Orlando, FL

    Google Scholar 

  • McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659. doi:10.1016/S0002-9343(00)00412-5

    Article  CAS  Google Scholar 

  • Miliauskas G, Venskutonis PR, van Beek TA (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 85:231–237. doi:10.1016/j.foodchem.2003.05.007

    Article  CAS  Google Scholar 

  • Mitsuta H, Yasumoto K, Iwami K (1966) Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo Shokuryou 19:210–214

    Google Scholar 

  • Mittler R, Merquiol E, Hallak-Herr E et al (2001) Living under a “dormant” canopy: a molecular acclimation mechanism of the desert plant Retama raetam. Plant J 25:407–416. doi:10.1046/j.1365-313x.2001.00975.x

    Article  CAS  Google Scholar 

  • Namba T, Shiraki K, Kurokawa M (1998) Development of antiviral agents from traditional medicines. In: Ageta H, Aimi N, Ebizuka Y, Fujita T, Honda G (eds) Towards natural medicine research in the 21st century. Elsevier Science, Amsterdam

    Google Scholar 

  • National Committee for Clinical Laboratory Standards (1997) Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically, 4th edn. NCCLS approved standard, NCCLS document M7-A4

  • Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32

    CAS  Google Scholar 

  • Osawa T, Namiki M (1985) Natural antioxidant isolated from eucalyptus leaf waxes. J Agr Food Chem 33:777–780. doi:10.1021/jf00065a001

    Article  CAS  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042. doi:10.1021/np9904509

    Article  CAS  Google Scholar 

  • Polydoro M, De Souza KCB, Andrades ME et al (2004) Antioxidant, a pro-oxidant and cytotoxic effects of Achyrocline satureioides extracts brazil. Life Sci 74:2815–2826. doi:10.1016/j.lfs.2003.09.073

    Article  CAS  Google Scholar 

  • Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  • Scherrer D, Gerhardt P (1971) Molecular sieving by the Bacillus megatrium cell wall and protoplast. J Bacteriol 107:718–735

    CAS  Google Scholar 

  • Shahidi F, Janitha PK, Wanasundara PD (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32:67–103

    Article  CAS  Google Scholar 

  • Singleton VL, Rosi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Oenol Vitic 16:144–158

    CAS  Google Scholar 

  • Sun B, Richardo-da-Silvia JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274. doi:10.1021/jf980366j

    Article  CAS  Google Scholar 

  • Tona L, Kambu K, Ngimbi N et al (1998) Antiamoebic and phytochemical screening of some congolesse medical plants. J Ethnopharmacol 61:57–65. doi:10.1016/S0378-8741(98)00015-4

    Article  CAS  Google Scholar 

  • Tsuchiya H, Sato M, Miyazaki S et al (1996) Comparative study on the antibacterial activity of phytochemical flavones against methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 50:27–34. doi:10.1016/0378-8741(96)85514-0

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Pr Mohamed Chaieb for botanical classification of the plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zine Mighri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayet, E., Maha, M., Samia, A. et al. Antimicrobial, antioxidant, and antiviral activities of Retama raetam (Forssk.) Webb flowers growing in Tunisia. World J Microbiol Biotechnol 24, 2933–2940 (2008). https://doi.org/10.1007/s11274-008-9835-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9835-y

Keywords

Navigation