Skip to main content
Log in

Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The diesel-degrading strains, designated as MJ01 and MJ4, were isolated from oil-contaminated soil in Daejeon (South Korea) and were taxonomically characterized using a polyphasic approach and their diesel oil degradation abilities were analyzed. The isolates MJ01 and MJ4 were identified as Acinetobacter haemolyticus and Acinetobacter johnsonii, respectively, based on their 16S rDNA gene sequences, DNA–DNA relatedness, fatty acid profiles and various physiological characteristics. Strains MJ01 and MJ4 were able to use diesel oil as the sole carbon and energy source. Both strains could degrade over 90% of diesel oil with an initial concentration of 20,000 mg/l after incubation for 7 days, the most significant degradation occurred during the first 3 days. To our knowledge, this is the first report on diesel oil-degrading microorganisms among bacterial strains belonging to A. haemolyticus and A. johnsonii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO (2007) Microbial degradation of petroleum in a polluted tropical stream. World J Microbiol Biotechnol 23:1149–1159

    Article  CAS  Google Scholar 

  • Akinde SB, Obire O (2008) Aerobic heterotrophic bacteria and petroleum-utilizing bacteria from cow dung and poultry manure. World J Microbiol Biotechnol 24:1999–2002

    Article  Google Scholar 

  • Atlas RM, Cerniglia CE (1995) Bioremediation of petroleum pollutants. Bioscience 45:332–339

    Article  Google Scholar 

  • Bartha R, Bossert I (1984) The treatment and disposal of petroleum refinery wastes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, NY, pp 1–61

    Google Scholar 

  • Bicca FC, Fleck LC, Ayub MAZ (1999) Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Rev Microbiol 30:231–236

    Article  CAS  Google Scholar 

  • Bouvet PJM, Grimont PAD (1986) Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol 36:228–240

    Article  CAS  Google Scholar 

  • Cerqueira VS, Hollenbach EB, Maboni F, Camargo FAO, Peralba MR, Bento FM (2011) Bioprospection and selection of bacteria isolated from environments contaminated with petrochemical residues for application in bioremediation. World J Microbial Biotechnol (in press). doi:10.1007/s11274-011-0923-z

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  Google Scholar 

  • Di Cello F, Pepi M, Baldi F, Fani R (1997) Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus. Res Microbiol 148:237–249

    Article  Google Scholar 

  • Espeche ME, MacCormack WP, Fraile ER (1994) Factors affecting growth of an n-hexadecane degrader Acinetobacter species isolated from a highly polluted urban river. Int Biodeterior Biodegrad 33:187–196

    Article  Google Scholar 

  • Euzéby JP (2011) List of prokaryotic names with standing in nomenclature. http://www.bacterio.cict.fr. Last full update: 04 Nov 2011

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Finnerty WR (1988) Lipids of Acinetobacter. In: Applewhite TH (ed) Proceedings of the world conference on biotechnology for the fats and oils industry. American Oil Chemists Society, Champaign, IL, pp 184–188

    Google Scholar 

  • Fischer R, Bleichrodt FS, Gerischer UC (2008) Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression. Microbiology 154:3095–3103

    Article  CAS  Google Scholar 

  • Gouda MK, Omar SH, Nour Eldin HM, Chekroud ZA (2008) Bioremediation of kerosene II: a case study in contaminated clay (laboratory and field: scale microcosms). World J Microbiol Biotechnol 24:1451–1460

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hong JH, Kim JS, Choi OK, Cho KS, Ryu HW (2005) Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World J Microbiol Biotechnol 21:381–384

    Article  CAS  Google Scholar 

  • Kang YS, Jung J, Jeon CO, Park W (2011) Acinetobacter oleivorans sp. nov. is capable of adhering to and growing on diesel-oil. J Microbiol 49:29–34

    Article  CAS  Google Scholar 

  • Kebria DY, Khodadadi A, Ganjidoust H, Badkoubi A, Amoozegar MA (2009) Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int J Environ Sci Tech 6:435–442

    CAS  Google Scholar 

  • Kim MK, Im WT, Ohta H, Lee M, Lee ST (2005) Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43:152–157

    CAS  Google Scholar 

  • Kubota K, Koma D, Matsumya Y, Chung S, Kubo M (2008) Phylogenetic analysis of long chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-DCPIP assay. Biodegradation 19:749–757

    Article  CAS  Google Scholar 

  • Kwapisz E, Wszelaka J, Marchut O, Bielecki S (2008) The effect of nitrate and ammonium ions on kinetics of diesel oil degradation by Gordonia alkanivorans S7. Int Biodeterior Biodegrad 61:214–222

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  Google Scholar 

  • Lee HJ, Lee SS (2010) Acinetobacter kyonggiensis sp. nov., a β-glucosidase-producing bacterium, isolated from sewage treatment plant. J Microbiol 48:754–759

    Article  Google Scholar 

  • Lee M, Kim MK, Kwon MJ, Park BD, Kim MH, Goodfellow M, Lee ST (2005) Effect of the synthesized mycolic acid on the biodegradation of diesel oil by Gordonia nitida strain LE31. J Biosci Bioeng 100:429–436

    Article  CAS  Google Scholar 

  • Lee M, Kim MK, Singleton I, Goodfellow M, Lee ST (2006) Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J Appl Microbiol 100:325–333

    Article  CAS  Google Scholar 

  • Lee YC, Shin HJ, Ahn Y, Shin MC, Lee M, Yang JW (2010) Biodegradation of diesel by mixed bacteria immobilized onto a hybrid support of peat moss and additives: a batch experiment. J Hazard Mater 183:940–944

    Article  CAS  Google Scholar 

  • Liu CW, Liu HS (2010) Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fedbatch bioreactors. Process Biochem 46:202–209

    Article  Google Scholar 

  • Marin M, Pedregosa A, Rios S, Laborda F (1996) Study of factors influencing the degradation of heating oil by Acinetobacter calcoaceticus MM5. Int Biodeterior Biodegrad 38:69–75

    Article  CAS  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Mohanty G, Mukherji S (2008) Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. Int Biodeterior Biodegrad 61:240–250

    Article  CAS  Google Scholar 

  • Moore DD, Dowhan D (1995) Preparation and analysis of DNA. In: Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology, chapter 2. Wiley, New York, NY, pp 2–11

    Google Scholar 

  • Olson JJ, Mills GL, Herbert BE, Morris PJ (1999) Biodegradation rates of separated diesel oil components. Environ Toxicol Chem 18:2448–2453

    Article  CAS  Google Scholar 

  • Pei QH, Shahir S, Santhana Raj AS (2009) Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World J Microbiol Biotechnol 25:1085–1093

    Article  CAS  Google Scholar 

  • Prathibha K, Sumathi S (2008) Biodegradation of mixture containing monohydroxybenzoate isomers by Acinetobacter calcoaceticus. World J Microbiol Biotechnol 24:813–823

    Article  CAS  Google Scholar 

  • Ratledge C (1978) Degradation of aliphatic hydrocarbons. In: Watkinson RJ (ed) Developments in biodegradation of hydrocarbons, vol 1. Applied Science, London, pp 1–46

    Google Scholar 

  • Rojo F (2009) Enzymes for aerobic degradation of alkanes. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 2. Springer, Germany, pp 781–797

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sakai YJ, Maeng H, Kubota S, Tani A, Tani Y, Kato N (1996) A non-conventional dissimilation pathway for long chain n-alkanes in Acinetobacter sp. M-1 that starts with a dioxygenase reaction. J Ferment Bioeng 81:286–291

    Article  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note. MIDI, Newark, DE

    Google Scholar 

  • Shukor MY, Hassan NA, Jusoh AZ, Perumal N, Shamaan NA, MacCormack WP, Syed MA (2009) Isolation and characterization of a Pseudomonas diesel-degrading strain from Antarctica. J Environ Biol 30:1–6

    CAS  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Su GC, Zhou CY, Cai HN, Su WJ, Shi ZN, Fang SH (2008) Effectiveness of the cleaning performance of the bacterial strain Acinetobacter sp. SG06-02 in the petroleum hydrocarbon-polluted intestine of clams. World J Microbiol Biotechnol 24:383–386

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Ueno A, Ito Y, Yumoto I, Okuyama H (2007) Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World J Microbiol Biotechnol 23:1739–1745

    Article  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  Google Scholar 

  • Vaz-Moreira I, Novo A, Hantsis-Zacharov E, Lopes AR., Gomila M, Nunes OC, Manaia CM, Halpern M (2011) Acinetobacter rudis sp. nov. isolated from raw milk and raw wastewater. Int J Syst Bacteriol (in press). doi:10.1099/ijs.0.027045-0

  • Watkinson RJ, Morgan P (1990) Physiology of aliphatic hydrocarbon degrading microorganisms. Biodegradation 1:79–92

    Article  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harber W, Schleifer KH (eds) The prokaryotes. Springer, Berlin, pp 3352–3378

    Google Scholar 

  • Wongsa P, Tanaka M, Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2004) Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Curr Microbiol 49:415–422

    Article  CAS  Google Scholar 

  • Young CC, Lin TC, Yeh MS, Shen FT, Chang JS (2005) Identification and kinetic characteristics of an indigenous diesel-degrading Gordonia alkanivorans strain. World J Microbiol Biotechnol 21:1409–1414

    Article  Google Scholar 

  • Yuste L, Corbella ME, Turiegano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Korean Brain Pool Program of 2011 (grant 111S-4-5-0032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myungjin Lee or Leonid N. Ten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Woo, SG. & Ten, L.N. Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil. World J Microbiol Biotechnol 28, 2057–2067 (2012). https://doi.org/10.1007/s11274-012-1008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1008-3

Keywords

Navigation