Skip to main content

Advertisement

Log in

Diversity of culturable filamentous Ascomycetes in the eastern South Pacific Ocean off Chile

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Our study reports the diversity of culturable mycoplankton in the eastern South Pacific Ocean off Chile to contribute with novel knowledge on taxonomy of filamentous fungi isolated from distinct physicochemical and biological marine environments. We characterized spatial distribution of isolates, evaluated their viability and assessed the influence of organic substrate availability on fungal development. Thirty-nine Operational Taxonomic Units were identified from 99 fungal strains isolated from coastal and oceanic waters by using Automatic Barcode Gap Discovery. All Operational Taxonomic Units belonged to phylum Ascomycota and orders Eurotiales, Dothideales, Sordariales and Hypocreales, mainly Penicillium sp. (82%); 11 sequences did not match existing species in GenBank, suggesting occurrence of novel fungal taxa. Our results suggest that fungal communities in the South Pacific Ocean off Chile appear to thrive in a wide range of environmental conditions in the ocean and that substrate availability may be a factor influencing fungal viability in the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfaro M, Holder M (2006) The posterior and the prior in bayesian phylogenetics. Annu Rev Ecol Evol Syst 37:19–42. doi:10.1146/annurev.ecolsys.37.091305.110021

    Article  Google Scholar 

  • Andreakis N, Høj L, Kearns P et al (2015) Diversity of marine-derived fungal cultures exposed by DNA barcodes: the algorithm matters. PLoS ONE 10:1–22. doi:10.1371/journal.pone.0136130

    Article  Google Scholar 

  • Bass D, Howe A, Brown N, et al (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc Biol Sci R Soc 274:3069–3077. doi:10.1098/rspb.2007.1067

    Article  CAS  Google Scholar 

  • Bosch A, Maronna RA, Yantorno OM (1995) A simple descriptive model of filamentous fungi spore germination. Process Biochem 30:599–606. doi:10.1016/0032-9592(94)00007-5

    Article  CAS  Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R et al (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183. doi:10.1111/j.1462-2920.2010.02318.x

    Article  CAS  Google Scholar 

  • Frisvad J, Gravesen S (1994) Health implications of fungi in indoor environments, air quality monographs. In: Samson R, Flannigan B, Flannigan M, et al. (eds) Penicillium and Aspergillus from Danish homes and working places with indoor air problems: identification and mycotoxin determination, 1st edn. Pergamon Press, Amsterdam, pp 281–290

    Google Scholar 

  • Fuller MS, Poyton R (1964) A new technique for the isolation of aquatic fungi. Bioscience 14:45–46

    Article  Google Scholar 

  • Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101. doi:10.1128/AEM.01315-08

    Article  CAS  Google Scholar 

  • Gao Z, Johnson ZI, Wang G (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120. doi:10.1038/ismej.2009.87

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes, application to the identification of mycorrihiza and rusts. Mol Ecol 2:113–118

    Article  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

    Article  CAS  Google Scholar 

  • Gutiérrez MH, Pantoja S, Quiñones RA, Gonzalez R (2010) First record of filamentous fungi in the coastal upwelling ecosystem off central Chile. Gayana 74:66–73

    Google Scholar 

  • Gutiérrez MH, Pantoja S, Tejos E, Quiñones RA (2011) The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol 158:205–219. doi:10.1007/s00227-010-1552-z

    Article  Google Scholar 

  • Gutiérrez MH, Galand PE, Moffat C, Pantoja S (2015) Melting glacier impacts community structure of Bacteria, Archaea and Fungi in a Chilean Patagonia fjord. Environ Microbiol 17:3882–3897. doi:10.1111/1462-2920.12872

    Article  Google Scholar 

  • Gutiérrez MH, Jara AM, Pantoja S (2016) Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol 18:1–24. doi:10.1111/1462-2920.13257

    Article  Google Scholar 

  • Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51. doi:10.3114/sim.2011.70.01

    Article  CAS  Google Scholar 

  • Houbraken J, Frisva J, Samson R (2011) Taxonomy of Penicillium section Citrina. Stud Mycol 70:53–158. doi:10.3114/sim.2011.70.02

    Article  CAS  Google Scholar 

  • Irinyi L, Serena C, Garcia-Hermoso D et al (2015) International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database—the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol 53:313–337. doi:10.1093/mmy/myv008

    Article  CAS  Google Scholar 

  • Jebaraj CS, Raghukumar C (2009) Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res 113:100–109. doi:10.1016/j.mycres.2008.08.009

    Article  Google Scholar 

  • Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412. doi:10.1111/j.1574-6941.2009.00804.x

    Article  CAS  Google Scholar 

  • Johnson TW, Sparrow FK (1961) Fungi in oceans and estuaries. Verland, New York

    Google Scholar 

  • Jones EBG (2011) Are there more marine fungi to be described? Bot Mar 54:343–354. doi:10.1515/BOT.2011.043

    Article  Google Scholar 

  • Klaubauf S, Inselsbacher E, Zechmeister-Boltenstern S, et al (2010) Molecular diversity of fungal communities in agricultural soils from lower Austria. Fungal Divers 44:65–75. doi:10.1007/s13225-010-0053-1

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York

    Google Scholar 

  • Kurtzman CP, Fell JW (2006) Yeast systematics and phylogeny-implications of molecular identification methods for studies in ecology. In: Rosa C, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 11–30

    Chapter  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26 S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371. doi:10.1023/A:1001761008817

    Article  CAS  Google Scholar 

  • Lai X, Cao L, Tan H et al (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762. doi:10.1038/ismej.2007.51

    Article  CAS  Google Scholar 

  • Landeweert R, Leeflang P, Kuyper TW et al (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69:327–333. doi:10.1128/AEM.69.1.327-333.2003

    Article  CAS  Google Scholar 

  • Liu J, Wang J, Gao G et al (2015) Distribution and diversity of fungi in freshwater sediments on a river catchment scale. Front Microbiol 6:1–12. doi:10.3389/fmicb.2015.00329

    CAS  Google Scholar 

  • Lyncht MDJ, Thorn RG (2006) Diversity of basidiomycetes in Michigan agricultural soils. Appl Environ Microbiol 72:7050–7056. doi:10.1128/AEM.00826-06

    Article  Google Scholar 

  • Montecino V, Paredes MA, Paolini P, Rutllant J (2006) Revisiting chlorophyll data along the coast in north-central Chile, considering multiscale environmental variability. Rev Chil Hist Nat 79:213–223. doi:10.4067/S0717-71782002030100031

    Article  Google Scholar 

  • Montero P, Daneri G, Cuevas LA et al (2007) Productivity cycles in the coastal upwelling area off Concepción: the importance of diatoms and bacterioplankton in the organic carbon flux. Prog Oceanogr 75:518–530. doi:10.1016/j.pocean.2007.08.013

    Article  Google Scholar 

  • Morrison-Gardiner S (2002) Dominant fungi from Australian coral reefs. Fungal Divers 9:105–121

    Google Scholar 

  • Murphy WJ, Eizirik E, O’Brien SJ et al (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351. doi:10.1126/science.1067179

    Article  CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T et al (2003) Cryptococcus surugaensis sp. nov., a novel yeast species from sediment collected on the deep-sea floor of Suruga Bay. Int J Syst Evol Microbiol 53:2095–2098. doi:10.1099/ijs.0.02712-0

    Article  CAS  Google Scholar 

  • Oren A, Gunde-Cimerman N (2012) Fungal life in the dead sea. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology, 1st edn. Springer, Berlin, pp 115–132

    Google Scholar 

  • Pang KL, Alias SA, Chiang MWL et al (2010) Sedecimiella taiwanensis gen. et sp. nov., a marine mangrove fungus in the Hypocreales (Hypocreomycetidae, Ascomycota). Bot Mar 53:493–498. doi:10.1515/BOT.2010.061

    Google Scholar 

  • Pantoja S, Sepúlveda J, González HE (2004) Decomposition of sinking proteinaceous material during fall in the oxygen minimum zone off northern Chile. Deep Sea Res Part 1 51:55–70. doi:10.1016/j.dsr.2003.09.005

    Article  CAS  Google Scholar 

  • Pennington JT, Mahoney KL, Kuwahara VS et al (2006) Primary production in the eastern tropical Pacific: a review. Prog Oceanogr 69:285–317. doi:10.1016/j.pocean.2006.03.012

    Article  Google Scholar 

  • Pitt J, Hocking A (2009) Fungi and food spoilage. Springer, London

    Book  Google Scholar 

  • Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877. doi:10.1111/j.1365-294X.2011.05239.x

    Article  CAS  Google Scholar 

  • Redberg GL, Hibbett DS, Ammirati JF, Rodriguez RJ (2003) Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences. Mycologia 95:836–845

    Article  CAS  Google Scholar 

  • Rodrigues A, Mueller UG, Ishak HD et al (2011) Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 78:244–255. doi:10.1111/j.1574-6941.2011.01152.x

    Article  CAS  Google Scholar 

  • Ronquist F, Teslenko M, Van Der Mark P et al (2012) Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029

    Article  Google Scholar 

  • Schlitzer R (2015) Ocean Data View. http://odv.awi.de.

  • Schoch CL, Seifert KA, Huhndorf S, et al (2012) From the cover: nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109:6241–6246. doi:10.1073/pnas.1117018109

    Article  CAS  Google Scholar 

  • Seifert K, Frisvad J (2000) Penicillium on solid wood products. In: Samson R, Pitt J (eds) Integration of modern taxonomic methods For Penicillium and Aspergillus classification. CRC Press, Amsterdam, pp 285–298

    Google Scholar 

  • Shoun H, Kim D-H, Uchiyama H, Sugiyama J (1992) Denitrification by fungi. FEMS Microbiol Lett 94:277–282. doi:10.1016/0378-1097(92)90643-3

    Article  CAS  Google Scholar 

  • Sobarzo M, Shearman RK, Lentz S (2007) Near-inertial motions over the continental shelf off Concepción, central Chile. Prog Oceanogr 75:348–362. doi:10.1016/j.pocean.2007.08.021

    Article  Google Scholar 

  • Summerbell RC, Gueidan C, Schroers HJ et al (2011) Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Stud Mycol 68:139–162. doi:10.3114/sim.2011.68.06

    Article  CAS  Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana trench. FEMS Microbiol Lett 152:279–285. doi:10.1016/S0378-1097(97)00211-5

    Article  CAS  Google Scholar 

  • Takishita K, Tsuchiya M, Reimer JD, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 10:165–169. doi:10.1007/s00792-005-0495-7

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  CAS  Google Scholar 

  • Visagie CM, Houbraken J, Frisvad JC et al (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371. doi:10.1016/j.simyco.2014.09.001

    Article  CAS  Google Scholar 

  • Wang G, Johnson ZI (2009) Impact of parasitic fungi on the diversity and functional ecology of marine phytoplankton. In: Kersey WT, Munger SP (eds) Marine Phytoplankton, 1st edn. Nova Science Publishers, pp 211–228

  • Wang S, Li XM, Teuscher F et al (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625. doi:10.1021/np060248n

    Article  CAS  Google Scholar 

  • Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian Sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek 93:163–174. doi:10.1007/s10482-007-9190-2

    Article  Google Scholar 

  • Wang G, Wang X, Liu X, Li Q (2012) Diversity and biogeochemical funtion of planktonic fungi in the ocean. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology. marine molecular biotechnology, 1st edn. Springer, Berlin, pp 71–88

    Google Scholar 

  • Wang X, Singh P, Gao Z et al (2014) Distribution and diversity of planktonic fungi in the west pacific warm pool. PLoS ONE 9:1–7. doi:10.1371/journal.pone.0101523

    Google Scholar 

  • Wang XW, Lombard L, Groenewald JZ, et al (2016) Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 36:83–133. doi:10.3767/003158516X689657

    Article  CAS  Google Scholar 

  • White TJ, Bruns S, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc 38:315–322

    Google Scholar 

  • Wilcox TP, Zwickl DJ, Heath TA, Hillis DM (2002) Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol Phylogenet Evol 25:361–371. doi:10.1016/S1055-7903(02)00244-0

    Article  CAS  Google Scholar 

  • Zajc J, Zalar P, Plemenitas A, Gunde-Cimerman N (2012) The mycobiota of the Salterns. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology, 1st edn. Springer, Berlin, pp 133–158

    Google Scholar 

Download references

Acknowledgements

This research was funded by COPAS Sur-Austral (CONICYT PIA PFB31). We are thankful to the Coastal Time Series Oceanographic Station (Station 18) of the Center for Oceanographic Research in the eastern South Pacific for sampling collection and ancillary data, to the Cruise BiG-RAPA 2010: The Biogeochemical Gradients-Role in Arranging Planktonic Assemblages and chief scientist Dan Repeta. We also wish to thank Lilian Nuñez and Eduardo Tejos from the Marine Organic Geochemistry laboratory, and the crew of R/V Kay–Kay II for their help in both laboratory and fieldwork. We acknowledge the valuable academic support of Professor Dr. Renato Quiñones as member of Ph.D. Committee Thesis of JV. SP acknowledges the Hanse-Wissenschaftskolleg (Institute for Advanced Studies), Delmenhorst, Germany, for a fellowship in support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Pantoja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vera, J., Gutiérrez, M.H., Palfner, G. et al. Diversity of culturable filamentous Ascomycetes in the eastern South Pacific Ocean off Chile. World J Microbiol Biotechnol 33, 157 (2017). https://doi.org/10.1007/s11274-017-2321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2321-7

Keywords

Navigation