Skip to main content
Log in

Nearest Distance Based Downlink Rate Modeling in Hyper-dense Heterogeneous Wireless Cell Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Different kinds of low transmit power, flexible cell extension and hyper dense base stations (BSs) overlaying on the well established macro cells, forming the hyper-dense multilayer heterogeneous wireless cell networks (HetNets), where the BSs in each tier are characterized by the differences in BSs transmit power, path loss exponent, tier-biasing factor and BSs spatial density, is the promising technology for 5th generation mobile networks and to support hot spots and cell edge coverage. The HetNets downlink rate modeling is one of the key and challenge problems for the random deployment characteristics of BSs in lower layer. In this paper, a three tier HetNets, which includes macro tier, Pico tier and Femto tier, is first modeled with the spatial point process in stochastic geometry theory; then, considering the BSs low transmit power, flexible cell extension and hyper BSs spatial density, a tractable downlink rate model based on the nearest distance and bias accepted factor is proposed, which adopt stochastic geometry theory and is easy to compute; last, the proposed downlink rate model is validated by numerical examples to confirm that the flexible cell extension BSs deployment in complex high traffic area with different path loss exponent is an effective scheme to improve quality of service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rao, J. B., & Fapojuwo, A. O. (2014). A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Communications Surveys & Tutorials, 16(1), 154–180.

    Article  Google Scholar 

  2. Pappalardo, I., Quer, G., Rao, B. D., & Zorzi, M. (2016). Caching strategies in heterogeneous networks with D2D, small BS and macro BS communications. In IEEE international conference on communications (ICC) (pp. 1–6).

  3. Serkan, A., Hazer, I., & Vincent, P. H. (2018). A tractable framework for the analysis of dense heterogeneous cellular networks. IEEE Transactions on Communications, 66(7), 3151–3171.

    Article  Google Scholar 

  4. Abd El-atty, S. M., Gharsseldien, Z. M., & Lizos, K. A. (2018). Predictive reservation for handover optimization in two-tier heterogeneous cellular networks. Wireless Personal Communications, 98(2), 1637–1661.

    Article  Google Scholar 

  5. Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications, 59(11), 3122–3134.

    Article  Google Scholar 

  6. Oguejiofor, O., Abe, A., Aniedu, A. N., & Okechukwu, G. N. (2018). Distributed resource allocation for two-tier heterogeneous cellular networks. IUP Journal of Telecommunications, 10(2), 7–33.

    Google Scholar 

  7. Yang, H. H., Lee, J., & Quek, T. Q. S. (2016). Heterogeneous cellular network with energy harvesting-based D2D communication. IEEE Transactions on Wireless Communications, 15(2), 406–419.

    Google Scholar 

  8. Jo, H.-S., Sang, Y. J., Xia, P., & Andrews, J. G. (2011). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications, 11(10), 3484–3495.

    Article  Google Scholar 

  9. Park, J.-B., & Kim, K. S. (2018). Load-balancing scheme with small-cell cooperation for clustered heterogeneous cellular networks. IEEE Transactions on Vehicular Technology, 67(1), 633–649.

    Article  Google Scholar 

  10. Xu, M., Tao, X., & Yang, F. (2016). On revenue efficiency for coordinated multipoint transmission in hetero-generous cellular networks. In IEEE wireless communications and networking conference (pp. 1–5).

  11. Andersson, G., Västberg, A., Devlic, A., & Cavdar, C. (2016). Energy efficient heterogeneous network deployment with cell DTX. In IEEE international conference on communications (ICC) (pp. 1–6).

  12. Ikuno, J., Wrulich, M., & Rupp, M. (2010). System level simulation of LTE networks. In IEEE vehicular technology conference (pp. 1–5).

  13. Brown, T. (2000). Cellular performance bounds via shotgun cellular systems. IEEE Journal on Selected Areas in Communications, 18(1), 2443–2455.

    Article  Google Scholar 

  14. Baccelli, F., & Blaszczyszyn, B. (2009). Stochastic geometry and wireless networks, Volume 1: (Theory). Foundations and Trends in Networking, 3(3–4), 249–449.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by Natural Science Fund for colleges and universities in Jiangsu Province, China (No. 17KJD510006, No.19KJD140004), and research initiation fund in Wuxi vocational institute of commerce, China (No. RS2015B006). We express our thanks to the Editors and anonymous reviewers for their detailed comments and valuable contribution to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu guang Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Theorem

In this appendix, we will provide the proof of theorem in part three and establish the average communication rate model of \(j_{ 0} {\text{th}}\) tier in HetNets based on the nearest distance, according to the Shannon formula in information theory. Denoting the communication rate in \(j_{ 0} {\text{th}}\) tier as \(\tau_{j}\), which is the mean over distance \(r\) and distributed channel power.

$$\begin{aligned} \tau_{{j_{0} }} & \triangleq {\mathbb{E}}\left[ {\ln \left( {1 + SINR} \right)} \right] \\ \text{ } & = \int_{r \succ 0} {{\mathbb{E}}\left[ {\ln \left( {1 + \frac{{P_{{j_{0} }} g_{{j_{0} }} r^{{ - \alpha_{{j_{0} }} }} }}{{\sum\limits_{\kappa = 1,}^{K} {\sum\limits_{{i \in \phi_{\kappa } /B_{{j_{0} }} }}^{{}} {P_{\kappa } h_{\kappa i} \left| {Y_{\kappa i} } \right|^{{ - \alpha_{\kappa } }} } + W/L_{0} } }}} \right)} \right]f_{r} \left( r \right)} dr \\ \end{aligned}$$
(7)

where \(SINR\) is the ratio of signal to interference noise, which could be obtained from (4) in Lemma 1, \(f_{r} \left( r \right)\) is the distribution function of the nearest between user and BS, which comes from (5) in Lemma 2, \(B_{{j_{0} }}\) denotes the base station which the user associates with in \(j_{ 0} {\text{th}}\) tier. According to \({\mathbb{E}}\left( X \right) = \int_{0}^{\infty } {{\mathbb{P}}\left[ {X > x} \right]dx}\) for \(X > 0\), we could obtain,

$$\begin{aligned} \text{ }\tau_{{j_{0} }} & = \int_{r \succ 0} {2\lambda_{{j_{0} }} \pi re^{{ - \lambda_{{j_{0} }} \pi r^{2} }} {\mathbb{E}}\left[ {\ln \left( {1 + \frac{{P_{{j_{0} }} g_{{j_{0} }} r^{{ - \alpha_{{j_{0} }} }} }}{{\sum\limits_{\kappa = 1,}^{K} {\sum\limits_{{i \in \phi_{\kappa } /B_{{j_{0} }} }}^{{}} {P_{\kappa } h_{\kappa i} \left| {Y_{\kappa i} } \right|^{{ - \alpha_{\kappa } }} } + W/L_{0} } }}} \right)} \right]} dr \\ & \text{ } = \int_{r \succ 0} {2\lambda_{{j_{0} }} \pi re^{{ - \lambda_{{j_{0} }} \pi r^{2} }} \int_{t \succ 0} {{\mathbb{P}}\left( {\ln \left( {1 + \frac{{P_{{j_{0} }} g_{{j_{0} }} r^{{ - \alpha_{{j_{0} }} }} }}{{\sum\limits_{\kappa = 1,}^{K} {\sum\limits_{{i \in \phi_{\kappa } /B_{{j_{0} }} }}^{{}} {P_{\kappa } h_{\kappa i} \left| {Y_{\kappa i} } \right|^{{ - \alpha_{\kappa } }} } + W/L_{0} } }}} \right) \succ t} \right)} dt} dr \\ & = \int_{r \succ 0} {2\lambda_{{j_{0} }} \pi re^{{ - \lambda_{{j_{0} }} \pi r^{2} }} \int_{t \succ 0} {{\mathbb{P}}\left( {g_{{j_{0} }} \succ P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} Q\left( {e^{t} - 1} \right)} \right)}dt} dr \\ \end{aligned}$$
(8)

In (8), \(Q = \sum\limits_{\kappa = 1}^{K} {\sum\limits_{{i \in \phi_{\kappa } /B_{{j_{0} }} }} {P_{\kappa } h_{\kappa i} \left| {Y_{\kappa i} } \right|^{{ - \alpha_{\kappa } }} } + W/L_{0} }\) is the sum of interference and noise. For \({\mathbb{P}}\left( {g_{{j_{0} }} \succ P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} Q\left( {e^{t} - 1} \right)} \right)\), we could deduced it as follows,

$$\begin{aligned} {\mathbb{P}}\left( {g_{{j_{0} }} \succ P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} Q\left( {e^{t} - 1} \right)} \right) & = \int_{0}^{\infty } {\exp \left( { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)q} \right)f_{Q} \left( q \right)dq} \\ & \text{ } = E_{Q} \left\{ {\exp \left( { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)q} \right)} \right\} \\ & = E_{Q} \left\{ {\exp \left[ { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)\left( {\sum\limits_{\kappa = 1}^{K} {I_{\kappa } } + W/L_{0} } \right)} \right]} \right\} \\ \end{aligned}$$
(9)
$$\begin{aligned} & \text{ = }E_{Q} \left\{ {\exp \left[ { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)\sum\limits_{\kappa = 1}^{K} {I_{\kappa } } - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)W/L_{0} } \right]} \right\} \\ & \text{ = }\exp \left( { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)W/L_{0} } \right)E_{Q} \left\{ {\exp \left[ { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)\sum\limits_{\kappa = 1}^{K} {I_{\kappa } } } \right]} \right\} \\ \text{ } & \text{ = }\exp \left( { - \frac{{\left( {e^{t} - 1} \right)}}{{{\raise0.7ex\hbox{${P_{{j_{0} }} L_{0} r^{{\alpha_{{j_{0} }} }} }$} \!\mathord{\left/ {\vphantom {{P_{{j_{0} }} L_{0} r^{{\alpha_{{j_{0} }} }} } W}}\right.\kern-0pt} \!\lower0.7ex\hbox{$W$}}}}} \right)E_{Q} \left\{ {\exp \left[ { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)\sum\limits_{\kappa = 1}^{K} {I_{\kappa } } } \right]} \right\} \\ & \text{ = }\exp \left( { - \frac{{\left( {e^{t} - 1} \right)}}{SNR}} \right)E_{Q} \left\{ {\exp \left[ { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)\sum\limits_{\kappa = 1}^{K} {I_{\kappa } } } \right]} \right\} \\ \end{aligned}$$
(10)
$$\begin{aligned} & = \exp \left( { - \frac{{\left( {e^{t} - 1} \right)}}{SNR}} \right)E_{Q} \left\{ {\prod\limits_{\kappa = 1}^{K} {\exp \left( { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)I_{\kappa } } \right)} } \right\} \\ & = \exp \left( { - \frac{{\left( {e^{t} - 1} \right)}}{SNR}} \right)\prod\limits_{\kappa = 1}^{K} {{\mathbb{E}}_{{I_{\kappa } }} \left[ {\exp \left( { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)I_{\kappa } } \right)} \right]} \\ \end{aligned}$$
(11)

In (9), \(I_{\kappa } = \sum\limits_{{i \in \phi_{\kappa } /B_{j0} }} {P_{\kappa } h_{\kappa i} \left| {Y_{\kappa i} } \right|^{{ - \alpha_{\kappa } }} }\) denotes the interference from BSs in kth tier; \(SNR = \frac{{P_{{j_{0} }} L_{0} r^{{\alpha_{{j_{0} }} }} }}{W}\) in (10) is the signal to noise ration of user in jth tier. \({\mathbb{E}}_{{I_{\kappa } }} \left[ {\exp \left( { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)I_{\kappa } } \right)} \right]\) in (11) could be deduced as follows, \(\begin{aligned} & {\mathbb{E}}_{{I_{\kappa } }} \left[ {\exp \left( { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)I_{\kappa } } \right)} \right] \\ \text{ } & \quad \text{ } = {\mathbb{E}}_{{\phi_{\kappa } }} \left[ {\exp \left( { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)\sum\limits_{{i \in \phi_{\kappa } /B_{{j_{0} }} }}^{{}} {P_{\kappa } h_{\kappa i} \left| {Y_{\kappa i} } \right|^{{ - \alpha_{\kappa } }} } } \right)} \right] \\ \text{ } & \quad \text{ } = {\mathbb{E}}_{{\phi_{\kappa } }} \left[ {\exp \left( { - P_{{j_{0} }}^{ - 1} P_{\kappa } r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)\sum\limits_{{i \in \phi_{\kappa } /B_{j0} }}^{{}} {h_{\kappa i} \left| {Y_{\kappa i} } \right|^{{ - \alpha_{\kappa } }} } } \right)} \right] \\ \text{ } & \quad \text{ } = {\mathbb{E}}_{{\phi_{\kappa } }} \left[ {\prod\limits_{{i \in \phi_{\kappa } /B_{{j_{0} }} }} {\exp \left( { - P_{{j_{0} }}^{ - 1} P_{\kappa } r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)h_{\kappa i} \left| {Y_{\kappa i} } \right|^{{ - \alpha_{\kappa } }} } \right)} } \right] \\ \end{aligned}\)

$$= \exp \left\{ {1 - 2\pi \lambda_{\kappa } \int_{0}^{\infty } {\left[ {1 - {\mathbb{E}}_{{\phi_{\kappa } }} \left[ {\exp \left( { - P_{{j_{0} }}^{ - 1} P_{\kappa } r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)h_{\kappa i} \left| y \right|^{{ - \alpha_{\kappa } }} } \right)} \right]} \right]ydy} } \right\}$$
(12)
$$\begin{aligned} & = \exp \left\{ {1 - 2\pi \lambda_{\kappa } \int_{{z_{k} }}^{\infty } {\left[ {1 - \int_{0}^{\infty } {\exp \left( { - P_{{j_{0} }}^{ - 1} P_{\kappa } r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)h_{\kappa i} \left| y \right|^{{ - \alpha_{\kappa } }} } \right)} f\left( {h_{\kappa i} } \right)dh_{\kappa i} } \right]ydy} } \right\} \\ \text{ } & \text{ = }\exp \left\{ {1 - 2\pi \lambda_{\kappa } \int_{{z_{k} }}^{\infty } {\left[ {1 - \frac{ 1}{{r^{{\alpha_{{j_{0} }} }} \hat{P}_{\kappa } \left( {e^{t} - 1} \right)y^{{ - \alpha_{\kappa } }} { + 1}}}} \right]ydy} } \right\} \\ \end{aligned}$$
(13)
$$\begin{aligned} & \text{ } = \exp \left\{ {1 - 2\pi \lambda_{\kappa } \int_{{z_{\kappa } }}^{\infty } {\frac{y}{{ 1 { + }\left( {r^{{\alpha_{{j_{0} }} }} \hat{P}_{\kappa } \left( {e^{t} - 1} \right)} \right)^{ - 1} y^{{\alpha_{\kappa } }} }}dy} } \right\} \\ & = \exp \left\{ {1 - \pi \lambda_{\kappa } r^{{\frac{2}{{\hat{\alpha }_{\kappa } }}}} \left( {\hat{P}_{\kappa } \left( {e^{t} - 1} \right)} \right)^{{\frac{2}{{\alpha_{\kappa } }}}} \int_{{\left( {{\raise0.7ex\hbox{${\hat{\delta }_{\kappa } }$} \!\mathord{\left/ {\vphantom {{\hat{\delta }_{\kappa } } \tau }}\right.\kern-0pt} \!\lower0.7ex\hbox{$\tau $}}} \right)^{{\frac{2}{{\alpha_{\kappa } }}}} }}^{\infty } {\frac{1}{{ 1 { + }\mu^{{{\raise0.7ex\hbox{${\alpha_{\kappa } }$} \!\mathord{\left/ {\vphantom {{\alpha_{\kappa } } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} }}dy} } \right\} \\ \text{ } & \text{ = }\exp \left\{ {1 - \pi \lambda_{\kappa } r^{{\frac{2}{{\hat{\alpha }_{\kappa } }}}} \hat{P}_{\kappa }^{{\frac{2}{{\alpha_{\kappa } }}}} \mathcal{Z}\left( {\left( {e^{t} - 1} \right),\alpha_{\kappa } ,\hat{\delta }_{\kappa } } \right)} \right\} \\ \end{aligned}$$
(14)

In (12) \({\mathbb{E}}\left\{ {\prod\limits_{x \in \phi } {f\left( x \right)} } \right\} = \exp \left\{ {1 - \lambda \int_{{R^{2} }} {\left( {1 - f\left( x \right)} \right)dx} } \right\}\) follows from the probability generating functional of the PPP, which states for some function \(f\left( x \right)\) that \({\mathbb{E}}\left\{ {\prod\limits_{x \in \phi } {f\left( x \right)} } \right\} = \exp \left\{ {1 - \lambda \int_{{R^{2} }} {\left( {1 - f\left( x \right)} \right)dx} } \right\}\) [5]; \(Z_{\kappa } = \left( {\hat{P}_{\kappa } \hat{\delta }_{\kappa } } \right)^{{1/\alpha_{\kappa } }} r^{{\hat{\alpha }_{\kappa } }}\) in (13) denotes the at least distance of the closet interference between tagged user and inference BSs in \(\kappa\) tier [8], and in (14), \(\mathcal{Z}\left[ {\left( {e^{t} - 1} \right),\alpha_{\kappa } ,\hat{\delta }_{\kappa } } \right] = \left( {e^{t} - 1} \right)^{{1/\alpha_{\kappa } }} \int_{{\left[ {\hat{\delta }_{\kappa } /\left( {e^{t} - 1} \right)} \right]^{{2/\alpha_{\kappa } }} }}^{\infty } {\frac{1}{{1 + \mu^{{\alpha_{\kappa } /2}} }}} d\mu\). Plugging (14) in (11), then \({\mathbb{P}}\left( {g_{{j_{0} }} \succ P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} Q\left( {e^{t} - 1} \right)} \right)\) is,

$$\begin{aligned} {\mathbb{P}}\left( {g_{{j_{0} }} \succ P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} Q\left( {e^{t} - 1} \right)} \right) & = \int_{0}^{\infty } {\exp \left( { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)q} \right)f_{Q} \left( q \right)dq} \\ & \text{ } = \exp \left( { - \frac{{\left( {e^{t} - 1} \right)}}{SNR}} \right)\prod\limits_{\kappa = 1}^{K} {{\mathbb{E}}_{{I_{\kappa } }} \left[ {\exp \left( { - P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} \left( {e^{t} - 1} \right)I_{\kappa } } \right)} \right]} \\ & \text{ } = \exp \left( { - \frac{{\left( {e^{t} - 1} \right)}}{SNR}} \right)\prod\limits_{\kappa = 1}^{K} {\exp \left\{ {1 - \pi \lambda_{\kappa } r^{{\frac{2}{{\hat{\alpha }_{\kappa } }}}} \hat{P}_{\kappa }^{{\frac{2}{{\alpha_{\kappa } }}}} \mathcal{Z}\left( {\left( {e^{t} - 1} \right),\alpha_{\kappa } ,\hat{\delta }_{\kappa } } \right)} \right\}} \\ & \text{ } = \exp \left\{ {1 - \frac{{\left( {e^{t} - 1} \right)}}{SNR} - \sum\limits_{\kappa = 1}^{K} {\pi \lambda_{\kappa } r^{{\frac{2}{{\hat{\alpha }_{\kappa } }}}} \hat{P}_{\kappa }^{{\frac{2}{{\alpha_{\kappa } }}}} \mathcal{Z}\left( {\left( {e^{t} - 1} \right),\alpha_{\kappa } ,\hat{\delta }_{\kappa } } \right)} } \right\} \\ \end{aligned}$$
(15)

substituting the (15) formula into the (9) form, then the communication rate \(\tau_{{j_{0} }}\) in jth tier is,

$$\begin{aligned} \tau_{j} & \triangleq {\mathbb{E}}\left[ {\ln \left( {1 + SINR} \right)} \right] \\ & \text{ } = \int_{r \succ 0} {2\lambda_{{j_{0} }} \pi re^{{ - \lambda_{{j_{0} }} \pi r^{2} }} \int_{t \succ 0} {{\mathbb{P}}\left( {g_{{j_{0} }} \succ P_{{j_{0} }}^{ - 1} r^{{\alpha_{{j_{0} }} }} Q\left( {e^{t} - 1} \right)} \right)} {\ominus }dt} dr \\ & \text{ } = \int_{r \succ 0} {2\lambda_{{j_{0} }} \pi re^{{ - \lambda_{{j_{0} }} \pi r^{2} }} \int_{0}^{\infty } {\exp \left\{ {1 - \frac{{\left( {e^{t} - 1} \right)}}{SNR} - \sum\limits_{\kappa = 1}^{K} {\pi \lambda_{\kappa } r^{{\frac{2}{{\hat{\alpha }_{\kappa } }}}} \hat{P}_{\kappa }^{{\frac{2}{{\alpha_{\kappa } }}}} \mathcal{Z}\left( {\left( {e^{t} - 1} \right),\alpha_{\kappa } ,\hat{\delta }_{\kappa } } \right)} } \right\}} dt} dr \\ \end{aligned}$$

and,

$$\begin{aligned} \mathcal{Z}\left( {\left( {e^{t} - 1} \right),\alpha_{\kappa } ,\hat{\delta }_{\kappa } } \right) & & = \left( {e^{t} - 1} \right)^{{2/\alpha_{\kappa } }} \int_{{\left[ {{\raise0.7ex\hbox{${\hat{\delta }_{\kappa } }$} \!\mathord{\left/ {\vphantom {{\hat{\delta }_{\kappa } } {\left( {e^{t} - 1} \right)}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\left( {e^{t} - 1} \right)}$}}} \right]^{{2/\alpha_{\kappa } }} }}^{\infty } {\frac{1}{{1 + \mu^{{\alpha_{\kappa } /2}} }}d\mu } \\ \text{ } & \text{ } = \frac{{2\left( {e^{t} - 1} \right)\hat{\delta }_{\kappa }^{{{\raise0.7ex\hbox{$2$} \!\mathord{\left/ {\vphantom {2 {\alpha_{\kappa } }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\alpha_{\kappa } }$}} - 1}} }}{{\alpha_{\kappa } - 2}}{}_{2}F_{1} \left[ {1,\text{ }1 - \frac{2}{{\alpha_{\kappa } }};\text{ }1 - \frac{2}{{\alpha_{\kappa } }};\text{ }\frac{{1 - e^{t} }}{{\hat{\delta }_{\kappa } }}} \right] \\ \end{aligned}$$

where \({}_{2}F_{1} \left[ {1,\text{ }1 - \frac{2}{{\alpha_{\kappa } }};\text{ }1 - \frac{2}{{\alpha_{\kappa } }};\text{ }\frac{{1 - e^{t} }}{{\hat{\delta }_{\kappa } }}} \right]\) is a hyper geometry function.

And the proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S. Nearest Distance Based Downlink Rate Modeling in Hyper-dense Heterogeneous Wireless Cell Networks. Wireless Pers Commun 114, 2769–2781 (2020). https://doi.org/10.1007/s11277-020-07502-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07502-z

Keywords

Navigation