Skip to main content
Log in

The reproductive biology of two understory plants in the Atlantic rain forest, Brazil

  • Original Article
  • Published:
Ecological Research

Abstract

Outcrossing and sexual reproduction of most flowering plants depends on pollinators. Plant traits likely to be involved in pollinator attraction include flower color, shape, and size. Furthermore, plant or flower density and the temporal flowering pattern may have an effect on reproduction. In this study, we examine the pollination ecology, breeding system, female reproductive output, and germination of two tropical understory species, Stenostephanus lobeliiformis (Acanthaceae) and Besleria melancholica (Gesneriaceae), which differ in these traits. Pollinator observations revealed that the dense flowering S. lobeliiformis with pinkish flowers received a higher diversity of pollinators, but visitor frequency measured as visits per flower per hour was much less (0.1 h−1) than that to B. melancholica, which has a smaller floral display of dull-colored flowers (1.5 h−1). Pollination experiments revealed that S. lobeliiformis but not B. melancholica is pollen-limited. In addition, both species are partially self-incompatible and depend on pollinators for outcrossing. Natural fruit set of open-pollinated unmanipulated flowers (control treatment) in both species is 22–26 %. Germination studies indicated inbreeding depression in S. lobeliiformis. We conclude that the pollination ecology of these species is influenced by a broad set of traits and that very different combinations of these traits can be successful in terms of reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ågren J (1996) Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology 77:1779–1790

    Article  Google Scholar 

  • Aizen MA, Harder LD (2007) Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology 88:271–281

    Article  PubMed  Google Scholar 

  • Andreata RHP, Gomes M, Baumgratz JFA (1997) Plantas herbáceo-arbustivas terrestres da Reserva Ecológica de Macaé de Cima. In: Lima HC, Guedes-Bruni RR (eds) Serra de Macaé de cima: Diversidade Florística e Conservação em Mata Atlântica. Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp 65–73

    Google Scholar 

  • Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  • Augspurger CK (1980) Mass-flowering of a tropical shrub (Hybanthus prunifolius): influence on pollinator attraction and movement. Evolution 34:475–488

    Article  Google Scholar 

  • Baker HG, Baker I (1990) The predictive value of nectar chemistry to the recognition of pollinator types. Israel J Bot 39:157–166

    CAS  Google Scholar 

  • Baker HG, Baker I, Hodges SA (1998) Sugar composition of nectar and fruits consumed by birds and bats in the tropics and subtropics. Biotropica 30:559–586

    Article  Google Scholar 

  • Brink D (1982) A bonanza-blank pollinator reward schedule in Delphinium nelsonii (Ranunculaceae). Oecologia 52:292–294

    Article  Google Scholar 

  • Brody AK, Mitchell RJ (1997) Effects of experimental manipulation of inflorescence size on pollination and pre-dispersal seed predation in the hummingbird-pollinated plant Ipomopsis aggregata. Oecologia 110:86–93

    Article  Google Scholar 

  • Bruna EM, Kress WJ, Marques F, Da Silva OF (2004) Heliconia acuminata reproductive success is independent of local floral density. Acta Amazonica 34:467–471

    Article  Google Scholar 

  • Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington, DC

    Google Scholar 

  • Burd M (1994) Bateman′s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139

    Article  Google Scholar 

  • Dafni A (1992) Pollination ecology: a practical approach, 1st edn. Oxford University Press, New York

    Google Scholar 

  • Daniel TF (1999) Revision of Stenostephanus (Acanthaceae) in Mexico. Contributions from the University of Michigan Herbarium 22:47–931

  • Dias da Cruz D, Mello MAR, Van Sluys M (2006) Phenology and floral visitors of two sympatric Heliconia species in the Brazilian Atlantic forest. Flora 201:519–527

    Article  Google Scholar 

  • Drucker DP, Costa FRC, Magnusson WE (2008) How wide is the riparian zone of small streams in tropical forests? A test with terrestrial herbs. J Trop Ecol 24:65–74

    Article  Google Scholar 

  • Endrigo E (2006) Aves da Mata Atlântica. Aves & Fotos Editora, São Paulo

    Google Scholar 

  • Faegri K, Van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, New York

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol S 35:375–403

    Article  Google Scholar 

  • Frankie GW (1974) Tropical phenology: applications for studies in community ecology. In: Lieth H (ed) Phenology and seasonal modeling. Springer, Berlin Heidelberg New York, pp 287–296

    Chapter  Google Scholar 

  • Frankie GW, Opler PA, Bawa KS (1976) Foraging behaviour of solitary bees: implications for outcrossing of a neo-tropical tree species. J Ecol 64:1049–1057

    Article  Google Scholar 

  • Freiberg M, Gottsberger G (2001) Influence of climatic gradients on life form frequency of Cyclanthaceae in the Reserve Naturelle des Nouragues, French Guiana. In: Gottsberger G, Liede S (eds) Life forms and dynamics in tropical forests. Dissertationes Botanicae 346, Cramer, Berlin, pp 141–151

  • Gentry AH (1974) Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6:54–68

    Article  Google Scholar 

  • Gentry AH, Dodson C (1987) Contribution of non-trees to species richness of a tropical rain forest. Biotropica 19:149–156

    Article  Google Scholar 

  • Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev 80:413–443

    Article  PubMed  Google Scholar 

  • Heard TA (1999) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206

    Article  PubMed  CAS  Google Scholar 

  • Heinrich B, Raven PH (1972) Energetics and pollination ecology. Science 176:597–602

    Article  PubMed  CAS  Google Scholar 

  • Hobbhahn N, Küchmeister H, Porembski S (2006) Pollination biology of mass flowering terrestrial Utricularia species (Lentibulariaceae) in the Indian Western Ghats. Plant Biol 8:791–804

    Article  PubMed  CAS  Google Scholar 

  • Hogue CL (1993) Latin American insects and entomology. University of California Press, Oxford

    Google Scholar 

  • Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70

    Article  Google Scholar 

  • Inouye DW (1980) The terminology of floral larceny. Ecology 61:1251–1253

    Article  Google Scholar 

  • Jennersten O, Nilsson SG (1993) Insect flower visitation frequency and seed production in relation to patch size of Viscaria vulgaris (Caryophyllaceae). Oikos 68:283–292

    Article  Google Scholar 

  • Kay KM, Schemske DW (2003) Pollinator assemblages and visitation rates for 11 species of neotropical Costus (Costaceae). Biotropica 35:198–207

    Google Scholar 

  • Klinkhamer PGL, van der Lugt PP (2004) Pollinator service only depends on nectar production rates in sparse populations. Oecologia 140:491–494

    Article  PubMed  Google Scholar 

  • Knight TM (2003) Floral density, pollen limitation, and reproductive success in Trillium grandiflorum. Oecologia 137:557–563

    Article  PubMed  Google Scholar 

  • Kriebel-Haehner R (2006) Gesneriáceas de Costa Rica. Instituto Nacional de Biodiversidad, INBio, Santo Domingo de Heredia, Costa Rica

  • Krömer T, Kessler M, Lohaus G, Schmidt-Lebuhn AN (2008) Nectar sugar composition and concentration in relation to pollination syndromes in Bromeliaceae. Plant Biol 10:502–511

    Article  PubMed  Google Scholar 

  • Kunin WE (1993) Sex and the single mustard: population density and pollinator behavior effects on seed set. Ecology 74:2145–2160

    Article  Google Scholar 

  • Kunin WE (1997) Population size and density effects in pollination: pollinator foraging and plant reproductive success in experimental arrays of Brassica kaber. J Ecol 85:225–234

    Article  Google Scholar 

  • Larson BMH, Barrett SCH (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69:503–520

    Article  Google Scholar 

  • Lienert J, Fischer M (2004) Experimental inbreeding reduces seed production and germination independent of fragmentation of populations of Swertia perennis. Basic Appl Ecol 5:43–52

    Article  Google Scholar 

  • Lindner A, Stein K, Freiberg M (2010) Abundance and vigor of three selected understory species along environmental gradients in South-Eastern Brazil. Ecotropica 16:101–112

    Google Scholar 

  • Lopes TCC, Chautems A, Andreata RHP (2005) Diversidade floristica das Gesneriaceae na Reserva Rio das Pedras, Mangaratiba, Rio de Janeiro, Brasil. Pesquisas Botânica 56:75–102

    Google Scholar 

  • Martén-Rodríguez S, Fenster CB (2010) Pollen limitation and reproductive assurance in Antillean Gesnerieae: a specialist vs. generalist comparison. Ecology 91:155–165

    Article  PubMed  Google Scholar 

  • McDade LA, Kinsman S (1980) The impact of floral parasitism in two neotropical hummingbird-pollinated plant species. Evolution 34:944–958

    Article  Google Scholar 

  • Morellato LPC, Haddad CFP (2000) Introduction: the Brazilian Atlantic forest. Biotropica 32:786–792

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in southeastern Brazil and influence of climate. Biotropica 32:793–810

    Google Scholar 

  • Ollerton J, Johnson SD, Cranmer L, Kellie S (2003) The pollination ecology of an assemblage of grassland asclepiads in South Africa. Ann Bot 92:807–834

    Article  PubMed  Google Scholar 

  • Ollerton J, Alarcón R, Waser NM, Price MV, Watts S, Cranmer L, Hingston A, Peter CI, Rottenberry J (2009) A global test of the pollination syndrome hypothesis. Ann Bot 103:1471–1480

    Article  PubMed  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. The new naturalist. Harper Collins, London

    Google Scholar 

  • Rathcke BJ (1983) Competition and facilitation among plants for pollination. In: Real L (ed) Pollination biology. Academic Press, London, pp 305–329

    Google Scholar 

  • Renner S (1983) The widespread occurrence of anther destruction by Trigona bees in Melastomataceae. Biotropica 15:251–256

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Robertson AW, Ladley JI, Kelly D (2005) Effectiveness of short-tongued bees as pollinators of apparently ornithophilous New Zealand mistletoes. Aust J Ecol 30:298–309

    Article  Google Scholar 

  • Roll J, Mitchell RJ, Cabin RJ, Marshall DL (1997) Reproductive success increases with local density of conspecifics in a desert mustard (Lesquerella fendleri). Conserv Biol 11:738–746

    Article  Google Scholar 

  • Roubik DW (1982) The ecological impact of nectar-robbing bees and pollinating hummingbirds on a tropical shrub. Ecology 63:354–360

    Article  Google Scholar 

  • Schleuning M, Huamán V, Matthies D (2008) Flooding and canopy dynamics shape the demography of a clonal Amazon understory herb. J Ecol 96:1045–1055

    Article  Google Scholar 

  • Schmid S, Schmid VS, Zillikens A, Harter-Marques B, Steiner J (2011) Bimodal pollination system of the bromeliad Aechmea nudicaulis involving hummingbirds and bees. Plant Biol 13:41–50

    Article  PubMed  Google Scholar 

  • Schmidt-Lebuhn AN, Schwerdtfeger M, Kessler M, Lohaus G (2007) Phylogenetic constraints vs. ecology in the nectar composition of Acanthaceae. Flora 202:62–69

    Article  Google Scholar 

  • Schwerdtfeger M (1996) Die Nektarzusammensetzung der Asteridae und ihre Beziehung zu Blütenökologie und Systematik. Dissertationes Botanicae 264:1–94

    Google Scholar 

  • Slaa EJ, Sánchez Chaves LA, Malagodi-Braga KS, Hofstede FE (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37:293–315

    Article  Google Scholar 

  • Stein K, Hensen I (2011) Potential pollinators and robbers: a study of the floral visitors of Heliconia angusta (Heliconiaceae) and their behaviour. J Pollinat Ecol 4:39–47

    Google Scholar 

  • Stiles FG, Freeman CE (1993) Patterns in floral nectar characteristics of some bird- visited plant species from Costa Rica. Biotropica 25:191–205

    Article  Google Scholar 

  • Sutherland SD, Vickery RK (1993) On the relative importance of floral colour, shape and nectar rewards in attracting pollinators to Mimulus. Great Basin Nat 53:107–117

    Google Scholar 

  • Tabarelli M, Pinto LP, Silva MC, Hirota M, Bede L (2005) Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic forest. Conserv Biol 19:695–700

    Article  Google Scholar 

  • Veloso HP, Rangel-Filho AL, Lima JCA (1991) Classificação da vegetação brasileira, adaptada a um sistema universal. IBGE/CDDI, Departamento de Documentação e Biblioteca, Rio de Janeiro

  • Weiner J (1982) A neighborhood model of annual-plant interference. Ecology 63:1237–1241

    Article  Google Scholar 

  • Wesselingh RA, Witteveldt M, Morisette J, Den Nijs HCM (1999) Reproductive ecology of understory species in a tropical montane forest in Costa Rica. Biotropica 31:637–645

    Article  Google Scholar 

  • Zapata TR, Arroyo MTK (1978) Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica 10:221–230

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the “Reserva Ecológica de Guapiaçu” (REGUA), especially to Nicholas and Raquel Locke, for logistical support and the permission to work on the property. We would like to thank Juliane Bader, Martin Hoepke, Carina Miriam Müller, and Jens Rabenstein for help in the field. We are grateful to Christine Voigt for support with the germination studies, to Anja Wodak for analyzing the nectar samples, and to Laszlo and Daniela Farkas for the spell check of the manuscript. KS was funded by the German National Academic Foundation. We thank two anonymous reviewers and the editor David Inouye for their constructive comments on former drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Stein.

About this article

Cite this article

Stein, K., Hensen, I. The reproductive biology of two understory plants in the Atlantic rain forest, Brazil. Ecol Res 28, 593–602 (2013). https://doi.org/10.1007/s11284-013-1050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-013-1050-0

Keywords

Navigation