Skip to main content
Log in

A newt does not change its spots: using pattern mapping for the identification of individuals in large populations of newt species

  • Technical Report
  • Published:
Ecological Research

Abstract

The correct identification of individuals is a requirement of capture-mark-recapture (CMR) methods, and it is commonly achieved by applying artificial marks or by mutilation of study-animals. An alternative, non-invasive method to identify individuals is to utilize the patterns of their natural body markings. However, the use of pattern mapping is not yet widespread, mainly because it is considered time consuming, particularly in large populations and/or long-term CMR studies. Here we explore the use of pattern mapping for the identification of adult individuals in the alpine (Ichthyosaura alpestris) and smooth (Lissotriton vulgaris) newts (Amphibia, Salamandridae), using the freely available, open-source software Wild-ID. Our photographic datasets comprised nearly 4000 captured animals’ images, taken during a 3-year period. The spot patterns of individual newts of both species did not change through time, and were sufficiently varied to allow their individual identification, even in the larger datasets. The pattern-recognition algorithm of Wild-ID was highly successful in identifying individual newts in both species. Our findings indicate that pattern mapping can be successfully employed for the identification of individuals in large populations of a broad range of animals that exhibit natural markings. The significance of pattern-mapping is accentuated in CMR studies that aim in obtaining long-term information on the demography and population dynamics of species of conservation interest, such as many amphibians facing population declines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antwis RE, Garcia G, Fidgett AL, Preziosi RF (2014) Tagging frogs with passive integrated transponders causes disruption of the cutaneous bacterial community and proliferation of opportunistic fungi. Appl Environ Microbiol 80:4779–4784. doi:10.1128/AEM.01175-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Arntzen JW, Goudie IBJ, Halley J, Jehle R (2004) Cost comparison of marking techniques in long-term population studies: PIT-tags versus pattern maps. Amphibia-Reptilia 25:305–315. doi:10.1163/1568538041975116

    Google Scholar 

  • Arzoumanian Z, Holmberg J, Norman B (2005) An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. J Appl Ecol 42:999–1011. doi:10.1111/j.1365-2664.2005.01117.x

    Article  Google Scholar 

  • Baker J, Gent T (1998) Marking and recognition of animals. In: Gent T, Gibson S (eds) Herpetofauna workers’ manual. Joint Nature Conservation Committee, Peterborough, pp 45–54

    Google Scholar 

  • Bendik NF, Morrison TA, Gluesenkamp AG, Sanders MS, O’Donnell LJ (2013) Computer-assisted photo identification outperforms visible implant elastomers in an endangered salamander, Eurycea tonkawae. PLoS One 8:e59424. doi:10.1371/journal.pone.0059424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaustein AR, Wake DB (1990) Declining amphibian populations: a global phenomenon. Trends Ecol Evol 5:203–204. doi:10.1016/0169-5347(90)90129-2

    Article  Google Scholar 

  • Blaustein AR, Wake DB, Sousa WP (1994) Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv Biol 8:60–71. doi:10.1046/j.1523-1739.1994.08010060.x

    Article  Google Scholar 

  • Bolger DT, Morrison TA, Vance B, Lee D, Farid H (2012) A computer-assisted system for photographic mark–recapture analysis. Methods Ecol Evol 3:813–822. doi:10.1111/j.2041-210X.2012.00212.x

    Article  Google Scholar 

  • Caci G, Biscaccianti AB, Cistrone L, Bosso L, Garonna AP, Russo D (2013) Spotting the right spot: computer-aided individual identification of the threatened cerambycid beetle Rosalia alpina. J Insect Conserv 17:787–795. doi:10.1007/s10841-013-9561-0

    Article  Google Scholar 

  • Cross MD, Lipps GJ Jr, Sapak JM, Tobin EJ, Root KV (2014) Pattern-recognition software as a supplemental method of identifying individual eastern box turtles (Terrapene c. carolina). Herpetol Rev 45:584–586

    Google Scholar 

  • Donnelly MA, Guyer C, Juterbock JE, Alford RA (1994) Techniques for marking amphibians. In: Heyer W, Donnelly MA, McDiarmid RA, Hayek LC, Foster MS (eds) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington, DC, pp 277–284

    Google Scholar 

  • Elgue E, Pereira G, Achaval-Coppes F, Maneyro R (2014) Validity of photo-identification technique to analyze natural markings in Melanophryniscus montevidensis (Anura: Bufonidae). Phyllomedusa 13:59–66. doi:10.11606/issn.2316-9079.v13i1p59-66

    Article  Google Scholar 

  • Ferner JW (2010) Measuring and marking post-metamorphic amphibians. In: Dodd CK Jr (ed) Amphibian ecology and conservation: a handbook of techniques. Oxford University Press, Oxford, pp 123–141

    Google Scholar 

  • Gamble L, Ravela S, McGarigal K (2008) Multi-scale features for identifying individuals in large biological databases: an application of pattern recognition technology to the marbled salamander Ambystoma opacum. J Appl Ecol 45:170–180. doi:10.1111/j.1365-2664.2007.01368.x

    Article  Google Scholar 

  • Gauthier-Clerc M, Gendner J-P, Ribic CA, Fraser WR, Woehler EJ, Descamps S, Gilly C, Le Bohec C, Le Maho Y (2004) Long-term effects of flipper-bands on penguins. Proc R Soc Lond B 271:S423–S426. doi:10.1098/rsbl.2004.0201

    Article  Google Scholar 

  • Hagström T (1973) Identification of newt specimens (Urodela, Triturus) by recording the belly pattern and a description of photographic equipment for such registrations. Br J Herpetol 4:321–326

    Google Scholar 

  • Halloran KM, Murdoch JD, Becker MS (2015) Applying computer-aided photo-identification to messy datasets: a case study of Thornicroft’s giraffe (Giraffa camelopardalis thornicrofti). Afr J Ecol 53:147–155. doi:10.1111/aje.12145

    Article  Google Scholar 

  • Langkilde T, Shine R (2006) How much stress do researchers inflict on their study animals? A case study using a scincid lizard, Eulamprus heatwolei. J Exp Biol 209:1035–1043. doi:10.1242/jeb.02112

    Article  PubMed  Google Scholar 

  • Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modelling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118. doi:10.2307/2937171

    Article  Google Scholar 

  • Martinho F, Pereira A, Brito C, Gaspar R, Carvalho I (2014) Structure and abundance of bottlenose dolphins (Tursiops truncatus) in coastal Setúbal Bay, Portugal. Mar Biol Res 11:144–156. doi:10.1080/17451000.2014.894244

    Article  Google Scholar 

  • Martin-Smith KM (2011) Photo-identification of individual weedy seadragons Phyllopteryx taeniolatus and its application in estimating population dynamics. J Fish Biol 78:1757–1768. doi:10.1111/j.1095-8649.2011.02966.x

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MA, Parris KM (2004) Clarifying the effect of toe clipping on frogs with Bayesian statistics. J Appl Ecol 41:780–786. doi:10.1111/j.0021-8901.2004.00919.x

    Article  Google Scholar 

  • Morrison TA, Bolger DT (2012) Wet season range fidelity in a tropical migratory ungulate. J Anim Ecol 81:543–552. doi:10.1111/j.1365-2656.2011.01941.x

    Article  PubMed  Google Scholar 

  • Morrison TA, Yoshizaki J, Nichols JD, Bolger DT (2011) Estimating survival in photographic capture–recapture studies: overcoming misidentification error. Methods Ecol Evol 2:454–463. doi:10.1111/j.2041-210X.2011.00106.x

    Article  Google Scholar 

  • Parris KM, McCall SC, McCarthy MA, Minteer BA, Steele K, Bekessy S, Medvecky F (2010) Assessing ethical trade-offs in ecological field studies. J Appl Ecol 47:227–234. doi:10.1111/j.1365-2664.2009.01755.x

    Article  Google Scholar 

  • Perry G, Wallace MC, Perry D, Curzer H, Muhlberger P (2011) Toe clipping of amphibians and reptiles: science, ethics, and the law. J Herpetol 45:547–555. doi:10.1670/11-037.1

    Article  Google Scholar 

  • Sreekar R, Purushotham CB, Saini K, Rao SN, Pelletier S, Chaplod S (2013) Photographic capture-recapture sampling for assessing populations of the Indian gliding lizard Draco dussumieri. PLoS One 8:e55935. doi:10.1371/journal.pone.0055935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi:10.1126/science.1103538

    Article  CAS  PubMed  Google Scholar 

  • Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P, Young BE (2008) Threatened Amphibians of the world. Lynx Edicions, Barcelona

    Google Scholar 

  • Van Tienhoven AM, Den Hartog JE, Reijns RA, Peddemors VM (2007) A computer-aided program for pattern-matching of natural marks on the spotted raggedtooth shark Carcharias taurus. J Appl Ecol 44:273–280. doi:10.1111/j.1365-2664.2006.01273.x

    Article  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations: modeling, estimation and decision-making. Academic Press, San Diego

    Google Scholar 

  • Wilson RP, McMahon CR (2006) Measuring devices on wild animals: what constitutes acceptable practice? Front Ecol Environ 4:147–154. doi:10.1890/1540-9295(2006)004[0147:MDOWAW]2.0.CO;2

  • Winkler C, Heunisch G (1997) Fotografische Methoden der Individualerkennung bei Bergmolch (Triturus alpestris) und Fadenmolch (T. helveticus) (Urodela, Salamandridae). Mertensiella 7:71–77

    Google Scholar 

Download references

Acknowledgments

We would like to thank Eva Pitta and Christos Papathanasiou for their valuable help during field work, the stuff of the Management Body of Chelmos - Vouraikos National Park for providing their facilities and assistance, Kostas Sotiropoulos for helpful discussions and two anonymous reviewers for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onoufrios Mettouris.

Ethics declarations

This study complies with the current laws of Greece.

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mettouris, O., Megremis, G. & Giokas, S. A newt does not change its spots: using pattern mapping for the identification of individuals in large populations of newt species. Ecol Res 31, 483–489 (2016). https://doi.org/10.1007/s11284-016-1346-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-016-1346-y

Keywords

Navigation