Skip to main content
Log in

Genetic mapping of the dominant gene controlling weeping habit in Japanese chestnut (Castanea crenata Sieb. et Zucc.)

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Trees with weeping traits have been prized for centuries because of their unique shape. Weeping trees of various species have been selected and propagated for their ornamental appeal as landscape plants, but there is limited information on the genes that control weeping. The genetic control of weeping in Japanese chestnut (Castanea crenata Sieb. et Zucc.) is reported to involve a dominant or recessive gene depending on the genetic background. In every case examined to date, weeping is controlled by a single gene of unknown location. Here, we identified the exact position of the dominant gene controlling the weeping trait in the Japanese chestnut. Using the genome scanning approach, which can cost-effectively screen for markers linked to traits, we first mapped this gene, referred to here as Weep, to the middle of linkage group L. Then, we developed new simple sequence repeat (SSR) markers using the genomic resources to enrich the target region. Using these markers and previously reported markers, we constructed the linkage group covering most of the chromosome (60.9 cM) with an average marker density of 4.7 cM per marker. Weep was located within a 3.0-cM genome region. SSR marker CmSca01437 co-segregated with Weep in all 138 F1 plantlets of a Tsukuba-38 × 668-6 cross. Our identification of the exact locus of the dominant weeping gene in Japanese chestnut, in conjunction with previous studies of recessive weeping genes in this and other tree species, furthers our understanding of the genetic mechanism of the weeping trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data archiving statement

This paper uses existing public data, and there is no new data to register. Primers have been newly designed, and all of them are shown in the table in the manuscript.

Data and materials availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The name, version, and parameters of the software used in this study are described in the Materials and Methods section.

References

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes AJ (1999) The essence of SNPs. Gene 234:177–186

    Article  CAS  PubMed  Google Scholar 

  • Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1010

    Article  CAS  PubMed  Google Scholar 

  • Brumlop S, Reichenbecher W, Tappeser B, Finckh MR (2013) What is the SMARTest way to breed plants and increase agrobiodiversity? Euphytica 194:53–66

    Article  Google Scholar 

  • Buck EJ, Hadonou M, James CJ, Blakesley D, Russell K (2003) Isolation and characterization of polymorphic microsatellites in European chestnut (Castanea sativa Mill.). Mol Ecol Notes 3:239–241

    Article  CAS  Google Scholar 

  • Chen X, Sullivan PF (2003) Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J 3:77–96

    Article  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B-Biological Sciences 363:557–572

    Article  CAS  Google Scholar 

  • Erdin N, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab-resistance gene Vb. Genome 49:1238–1245

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2021) Food and Agriculture Organisation of the United Nations. Statistical database, FAO, Rome http://www.fao.org

    Google Scholar 

  • Fukuda S, Ishimoto K, Sato S, Terakami S, Yamamoto T, Hiehata N (2014) Genetic mapping of the loquat canker resistance locus in bronze loquat (Eriobotrya deflexa). Tree Genet Genomes 10:875–883

    Article  Google Scholar 

  • Gobbin D, Hohl L, Conza L, Jermini M, Gessler C, Conedera M (2007) Microsatellite-based characterization of the Castanea sativa cultivar heritage of southern Switzerland. Genome 50:1089–1103

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic-linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollender CA, Pascal T, Tabb A, Hadiarto T, Srinivasan C, Wang WP, Liu ZC, Scorza R, Dardick C (2018) Loss of a highly conserved sterile alpha motif domain gene (WEEP) results in pendulous branch growth in peach trees. Proc Natl Acad Sci USA 115:E4690–E4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenic 12:172–175

    Article  Google Scholar 

  • Kotobuki K, Sawamura Y, Saito T, Takada N (2005) The mode of inheritance of weeping habit in Japanese chestnut, Castanea crenata. Acta Hortic 693:477–484

    Article  Google Scholar 

  • Kubisiak TL, Nelson CD, Staton ME, Zhebentyayeva T, Smith C, Olukolu BA, Fang GC, Hebard FV, Anagnostakis S, Wheeler N, Sisco PH, Abbott AG, Sederoff RR (2013) A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genet Genomes 9:557–571

    Article  Google Scholar 

  • Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill.). Mol Breeding 11:127–136

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monet R, Bastard Y, Gibault B (1988) Genetic-study of the weeping habit in peach. Agronomie 8:127–132

    Article  Google Scholar 

  • Moriya S, Iwanami H, Takahashi S, Kotoda N, Suzaki K, Yamamoto T, Abe K (2010) Genetic mapping of the crown gall resistance gene of the wild apple Malus sieboldii. Tree Genet Genomes 6:195–203

    Article  Google Scholar 

  • Moriya S, Terakami S, Iwanami H, Haji T, Okada K, Yamamoto T, Abe K (2013) Genetic mapping and marker-assisted selection of the gene conferring susceptibility to Alternaria blotch caused by Alternaria alternata apple pathotype in apple. Acta Hortic 976:555–560

    Article  Google Scholar 

  • Nishio S, Yamamoto T, Terakami S, Sawamura Y, Takada N, Nishitani C, Saito T (2011) Novel genomic and EST-derived SSR markers in Japanese chestnuts. Sci Hortic 130:838–846

    Article  CAS  Google Scholar 

  • Patocchi A, Walser M, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48:630–636

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Lorenzo S, Ballester A, Corredoira E, Vieitez AM, Agnanostakis S, Costa R, Bounous G, Botta R, Beccaro GL, Kubisiak TL, Conedera M et al (2012) Chestnut. In: Byrne DH (ed) M.J. B. Fruit breeding, Springer, New York, pp 729–769

    Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breeding 2:225–238

    Article  CAS  Google Scholar 

  • Sampson DR, Cameron DF (1965) Inheritance of bronze foliage extra petals and pendulous habit in ornamental crabapples. Proceedings of the American Society for Horticultural Science 86:717–722

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Scorza R, Bassi D, Liverani A (2002) Genetic interactions of pillar (columnar), compact, and dwarf peach tree genotypes. J Am Soc Hortic Sci 127:254–261

    Article  Google Scholar 

  • Staton M, Zhebentyayeva T, Olukolu B, Fang GC, Nelson D, Carlson JE, Abbott AG (2015) Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes. BMC Genomics 16:744

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun YS, Lu ZQ, Zhu XF, Ma H (2020) Genomic basis of homoploid hybrid speciation within chestnut trees. Nat Commun 11:3375

    Article  PubMed  PubMed Central  Google Scholar 

  • Terakami S, Adachi Y, Iketani H, Sato Y, Sawamura Y, Takada N, Nishitani C, Yamamoto T (2007) Genetic mapping of genes for susceptibility to black spot disease in Japanese pears. Genome 50:735–741

    Article  CAS  PubMed  Google Scholar 

  • Tu S, Qiu F (2007) The character display of Castanea mollissima var. pendula sexual progenies. Acta Horticulturae Sinica 34:760–762

    Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

    Google Scholar 

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93:343–349

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang JP, Tian SL, Sun XL, Cheng XC, Duan NB, Tao JH, Shen GN (2020) Construction of pseudomolecules for the Chinese chestnut (Castanea mollissima) genome. G3 10: 3565–3574.

  • Werner DJ, Chaparro JX (2005) Genetic interactions of pillar and weeping peach genotypes. HortScience 40:18–20

    Article  Google Scholar 

  • Yamamoto T, Tanaka T, Kotobuki K, Matsuta N, Suzuki M, Hayashi T (2003) Characterization of simple sequence repeats in Japanese chestnut. J Hortic Sci Biotech 78:197–203

    Article  CAS  Google Scholar 

  • Yamanouchi H, Koyama A, Machii H, Takyu T, Muramatsu N (2009) Inheritance of a weeping character and the low frequency of rooting from cuttings of the mulberry variety ‘Shidareguwa’. Plant Breed 128:321–323

    Article  Google Scholar 

  • Zhang J, Zhang QX, Cheng TR, Yang WR, Pan HT, Zhong JJ, Huang L, Liu EZ (2015) High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc). DNA Research 22:183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Mss. N. Yagihashi, H. Takahashi, and N. Minagawa of our laboratory for their technical assistance. Some computations were partially performed on the NIG supercomputer at ROIS (Research Organization of Information and Systems), National Institute of Genetics, Japan.

Funding

This work was funded exclusively by the Institute of Fruit Tree and Tea Science, NARO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Terakami.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by D. Chagné

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplemental Fig. 1

Overview of GSA. (a) Segregation of the weeping parent’s alleles of the marker conforms to 1:1 if the selected SSR marker is not linked to the Weep gene. An example of the segregation of the two alleles (pink and blue) of a hypothetical marker, Marker A, which is not linked to Weep, is shown. (b) Deviation from the 1:1 segregation is found if the selected SSR marker is linked to the Weep gene. An example of the segregation of the two alleles (green and yellow) of a hypothetical marker, Marker B, which is linked to the Weep gene, is shown (PDF 23 kb)

Table S1

(XLSX 17 kb)

Table S2

(XLSX 17 kb)

Table S3

(XLSX 18.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terakami, S., Nishio, S., Kato, H. et al. Genetic mapping of the dominant gene controlling weeping habit in Japanese chestnut (Castanea crenata Sieb. et Zucc.). Tree Genetics & Genomes 17, 16 (2021). https://doi.org/10.1007/s11295-021-01501-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-021-01501-2

Keywords

Navigation