Skip to main content

Advertisement

Log in

Monitoring wild pig populations: a review of methods

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Wild pigs (Sus scrofa) are widespread across many landscapes throughout the world and are considered to be an invasive pest to agriculture and the environment, or conversely a native or desired game species and resource for hunting. Wild pig population monitoring is often required for a variety of management or research objectives, and many methods and analyses for monitoring abundance are available. Here, we describe monitoring methods that have proven or potential applications to wild pig management. We describe the advantages and disadvantages of methods so that potential users can efficiently consider and identify the option(s) best suited to their combination of objectives, circumstances, and resources. This paper offers guidance to wildlife managers, researchers, and stakeholders considering population monitoring of wild pigs and will help ensure that they can fulfill their monitoring objectives while optimizing their use of resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo P, Vicente J, Höfle U, Cassinello J, Ruiz-Fons F, Gortazar C (2007) Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiol Infect 135:519–527

    CAS  Google Scholar 

  • Akbada B, Ayas Z (2012) Camera trap study on inventory and daily activity patterns of large mammals in a mixed forest in north-western Turkey. Mamm 76:43–48

    Google Scholar 

  • Alexander LJ, Rohrer GA, Beattie CW (1996) Cloning and characterization of 414 polymorphic porcine microsatellites. Anim Genet 27:137–148

    CAS  Google Scholar 

  • Allison NL, Destefano S (2006) Equipment and techniques for nocturnal wildlife studies. Wildl Soc Bull 34:1036–1044

    Google Scholar 

  • Allen BL (2012) Scat happens: spatiotemoral fluctuation in dingo scat collection rates. Austral J Zool 60:137–140

    Google Scholar 

  • Allen BL, Engeman RM, Allen LR (2011) Wild dogma: an examination of recent “evidence” for dingo regulation of invasive mesopredator release in Australia. Curr Zool 57:568–583

    Google Scholar 

  • Allen LR, Engeman R (1995) Assessing the impact of dingo predation on wildlife using an activity index. In: Proceedings of the 10th Australian Vertebrate Pest Conference. Hobart, Tasmania, pp 72–79

  • Allen L, Engeman RM, Krupa H (1996) Evaluation of three relative abundance indices for assessing dingo populations. Wildl Res 23:197–206

    Google Scholar 

  • Anderson DR (2001) The need to get the basics right in wildlife field studies. Wildl Soc Bull 29:1294–1297

    Google Scholar 

  • Baber DW, Coblentz BE (1986) Density, home range, habitat use, and reproduction in feral pigs on Santa Catalina Island. J Mamm 67:512–525

    Google Scholar 

  • Ballesteros C, Sage M, Fisher P, Massei G, Mateo R, de la Fuente J, Rossi S (2012) Iophenoxic acid as a bait marker for wild mammals: efficacy and safety considerations. Mamm Rev 43:156–166

    Google Scholar 

  • Ballesteros C, Vicente J, Carrasco-Garcia R, Mateo R, de la Fuente J, Gortazar C (2011) Specificity and success of oral-bait delivery to Eurasian wild boar in Mediterranean woodland habitats. Euro J Wildl Res 57:749–757

    Google Scholar 

  • Beard LA (1999) Training observers. Aust Zool 31:287–291

    Google Scholar 

  • Bengsen AJ, Leung LK-P, Lapidge SJ, Gordon IJ (2011) Using a general index approach to analyze camera-trap abundance indices. J Wildl Manag 75:1222–1227

    Google Scholar 

  • Blaum N, Engeman RM, Wasiolka B, Rossmanith E (2008) Indexing small mammalian carnivores in the southern Kalahari, South Africa. Wildl Res 35:72–79

    Google Scholar 

  • Boitani L, Mattei L, Nonis D, Corsi F (1994) Spatial and activity patterns of wild boars in Tuscany. J Mamm 75:600–612

    Google Scholar 

  • Braga C, Alexandre N, Fernandez-Llario P, Santos P (2010) Wild boar (Sus scrofa) harvesting using the espera hunting method: side effects and management implications. Eur J Wildl Res 56:465–469

    Google Scholar 

  • Broquet T, Menard N, Petit E (2007) Non-invasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 8:249–260

    Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL (1993) Distance sampling: estimating abundance of biological populations. Chapman and Hall, London

    Google Scholar 

  • Burnham KP, Anderson DR, Laake JL (1980) Estimation of density from line transect sampling of biological populations. Wildl Monogr 72:1–202

    Google Scholar 

  • Campbell TA, Long DB, Massei G (2011) Efficacy of the Boar-Operated-System to deliver baits to feral swine. Prev Vet Med 98:243–249

    Google Scholar 

  • Caughley G (1977) Analysis of vertebrate populations. Wiley, New York

    Google Scholar 

  • Caughley G, Sinclair A (1994) Wildlife ecology and management. Blackwell Science, Cambridge

    Google Scholar 

  • Choquenot D, Kay B, Lukins BS (1990) An evaluation of warfarin for the control of feral pigs. J Wildl Manag 54:353–359

    Google Scholar 

  • Choquenot D, Kilgour RJ, Lukins BS (1993) An evaluation of feral pig trapping. Wildl Res 20:15–22

    Google Scholar 

  • Choquenot D, Lukins B, Curran G (1997) Assessing lamb predation by feral pigs in Australia's semi-arid rangelands. J App Ecol 34:1445–1454

    Google Scholar 

  • Choquenot D, McIlroy J, Korn T (1996) Managing vertebrate pests: feral pigs. Bureau of Resource Sciences, Australian Government Publishing Service, Canberra

    Google Scholar 

  • Corn JL, Cumbee JC, Chandler BA, Stallknecht DE, Fischer JR (2005) Implication of feral swine expansion: expansion of feral swine in the United States and potential implication for domestic swine. Feral Swine Subcommittee on Brucellosis and Pseudorabies. United States Animal Health Association, St. Joseph, pp 295–297

    Google Scholar 

  • Corn JL, Cumbee JC, Barfoot R, Erickson GA (2009) Pathogen exposure in feral swine populations geographically associated with high densities of transitional swine premises and commercial swine production. J Wildl Dis 43:713–721

    Google Scholar 

  • Cowled BD, Gifford E, Smith M, Staples L, Lapidge SJ (2006) Efficacy of manufactured PIGOUT® baits for localised control of feral pigs in the semi-arid Queensland rangelands. Wildl Res 33:427–437

    Google Scholar 

  • Cowled BD, Aldenhoven J, Odeh IO, Garrett T, Moran C, Lapidge SJ (2008) Feral pig population structuring in the rangelands of eastern Australia: applications for designing adaptive management units. Conserv Genet 9:211–224

    Google Scholar 

  • De Bondi N, White JG, Stevens M, Cooke R (2010) A comparison of the effectiveness of camera trapping and live trapping for sampling terrestrial small-mammal communities. Wildl Res 37:456–465

    Google Scholar 

  • Ebert C, Huckschlag D, Schulz HK, Hohmann U (2010) Can hair traps sample wild boar (Sus scrofa) randomly for the purpose of non-invasive population estimation? Eur J Wildl Res 56:583–590

    Google Scholar 

  • Ebert C, Knauer F, Spielberger B, Thiele B, Hohmann U (2012) Estimating wild boar Sus scrofa population size using faecal DNA and capture–recapture modelling. Wildl Biol 18:142–152

    Google Scholar 

  • Elledge AE (2011) Habitat preferences and environmental impacts of feral pigs (Sus scrofa) in lowland tropical rainforests of north-eastern Australia. Dissertation. University of Queensland, Brisbane

  • Engeman RM (2003) More on the need to get the basics right: population indices. Wildl Soc Bull 31:286–287

    Google Scholar 

  • Engeman R (2005) Indexing principles and a widely applicable paradigm for indexing animal populations. Wildl Res 32:202–210

    Google Scholar 

  • Engeman R, Allen L (2000) Overview of a passive tracking index for monitoring wild canids and associated species. Integr Pest Manag Rev 5:197–203

    Google Scholar 

  • Engeman RM, Betsill C, Ray T (2011) Making contact: rooting out the potential for exposure of commercial production swine facilities to feral swine. EcoHealth 8:76–81

    Google Scholar 

  • Engeman RM, Constantin B, Nelson M, Woolard J, Bourassa J (2001) Monitoring changes in feral swine population and spatial distribution. Environ Conserv 28:235–240

    Google Scholar 

  • Engeman RM, Duffiney A, Braem S, Olsen C, Constantin B, Small P, Dunlap J, Griffin JC (2010) Dramatic and immediate improvements in insular nesting success for threatened sea turtles and shorebirds following predator management. J Exper Mar Biol Ecol 395:147–152

    Google Scholar 

  • Engeman RM, Otis DL, Bromaghin JF, Dusenberry WE (1989) On the use of the R50. In: Fagerstone F, Curnow R (eds) Vertebrate pest control and management materials. Vol 6, STP1055. American Society for Testing and Materials, Philadelphia, pp 13–18

    Google Scholar 

  • Engeman RM, Pipas MJ, Gruver KS, Allen L (2000) Monitoring coyote populations with a passive activity index. Wildl Res 27:553–557

    Google Scholar 

  • Engeman RM, Pipas MJ, Gruver KS, Bourassa J, Allen L (2002) Plot placement when using a passive tracking index to simultaneously monitor multiple species of animals. Wildl Res 29:85–90

    Google Scholar 

  • Engeman RM, Stevens A, Allen J, Dunlap J, Daniel M, Teague D, Constantin BU (2007) Feral swine management for conservation of an imperiled wetland habitat: Florida's vanishing seepage slopes. Biol Conserv 134:440–446

    Google Scholar 

  • Engeman RM, Sugihara RT (1998) Optimization of variable area transect sampling using Monte Carlo simulation. Ecol 79:1425–1434

    Google Scholar 

  • Engeman RM, Sugihara RT, Pank LF, Dusenberry WE (1994) A comparison of plotless density estimators using Monte Carlo simulation. Ecol 75:1769–1779

    Google Scholar 

  • Engeman RM, Whisson DA (2003) A visual method for indexing muskrat populations. Intern Biodeterior Biodegrad 52:101–106

    Google Scholar 

  • Engeman RM, Witmer GW (2000) IPM strategies: indexing difficult to monitor populations of pest species. In: Salmon TP, Crabb AC (eds) Proceedings 19th vertebrate pest conference. University of California, Davis, pp 183–189

    Google Scholar 

  • Fernandez-Llario P, Matoes-Quesada PM, Silverio A, Santos P (2003) Habitat effects and shooting techniques on two wild boar (Sus scrofa) populations in Spain and Portugal. Z Jagdwiss 49:120–129

    Google Scholar 

  • Festa-Bianchet M (2007) Ecology, evolution, economics and ungulate management. In: Fullbright T, Hewitt D (eds) Wildlife science: linking ecological theory and management applications. CRC, Boca Raton, pp 183–202

    Google Scholar 

  • Fewster RM, Pople AR (2008) A comparison of mark–recapture distance-sampling methods applied to aerial surveys of eastern grey kangaroos. Wildl Res 35:320–330

    Google Scholar 

  • Fickel J, Hohmann U (2006) A methodological approach for non-invasive sampling for population size estimates in wild boars (Sus scrofa). Eur J Wildl Res 52:28–33

    Google Scholar 

  • Fisher P (1999) Review of using rhodamine B as a marker for wildlife studies. Wildl Soc Bull 27:318–329

    Google Scholar 

  • Focardi S, De Marinis AM, Rizzotto M, Pucci A (2001) Comparative evaluation of thermal infrared imaging and spotlighting to survey wildlife. Wildl Soc Bull 29:133–139

    Google Scholar 

  • Franzetti B, Ronchi B, Marini F, Scacco M, Calmanti R, Calabrese A, Paola A, Paolo M, Focardi S (2012) Nocturnal line transect sampling of wild boar (Sus scrofa) in a Mediterranean forest: long-term comparison with capture–mark–resight population estimates. Eur J Wildl Res 58:385–402

    Google Scholar 

  • Fry T, Dunbar M (2007) A review of biomarkers used for wildlife damage and disease management. In: Nolte DL, Arjo WM, Stalman DH (eds) Proceedings of the 12th wildlife damage management conference, pp 216–222

  • Gaillard JM, Duncan P, Delorme D, van Laere G, Pettorelli N, Maillard D, Renaud G (2003) Effects of hurricane Lothar on the population dynamics of roe deer. J Wildl Manage 67:767–773

    Google Scholar 

  • Gill R, and Brandt G (2010) Estimating density of British Wild Boar populations using thermal imaging. 8th International Symposium on Wild Boar and other Suids, York, UK, p 45

  • Grauer A, König A (2009) Management of chamois in Bavaria (Germany): the importance of game activities in scabies control. Wildl Biol Pract 5:115–127

    Google Scholar 

  • Haridas S, Diong CH, Seet G, Lee NSL (2011) Conundrum of the Eurasian wild pig Sus scrofa status on the island of Singapore: human wildlife and environmental conflict. In: Jacob J, Esther A (eds) 8th European vertebrate pest management conference. Julius Kühn-Archiv, Quedlinburg, p 432

    Google Scholar 

  • He F, Gaston KJ (2000) Estimating species abundance from occurrence. Am Nat 156:553–559

    Google Scholar 

  • Hebeisen C, Fattebert J, Baubet E, Fischer C (2008) Estimating wild boar (Sus scrofa) abundance and density using capture–resights in Canton of Geneva, Switzerland. Eur J Wildl Res 54:391–401

    Google Scholar 

  • Hoffman J, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol 14:599–612

    CAS  Google Scholar 

  • Hone J (1988) Evaluation of methods for ground survey of feral pigs and their sign. Acta Theriol 33:451–465

    Google Scholar 

  • Hone J (1995) Spatial and temporal aspects of vertebrate pest damage with emphasis on feral hogs. J Appl Ecol 32:311–319

    Google Scholar 

  • Hone J (2002) Feral pigs in Namadgi National Park, Australia: dynamics, impacts and management. Biol Conserv 105(2):231–242

    Google Scholar 

  • Hone H (2012) Applied population and community ecology: the case of feral pigs in Australia. Wiley-Blackwell, Oxford

    Google Scholar 

  • Hone J, Martin W (1998) A study of dung decay and plot size for surveying feral pigs using dung counts. Wildl Res 25:255–260

    Google Scholar 

  • Hone J, Pederson H (1980) Changes in a feral pig population after poisoning. In: Clark JP, Marsh RE (eds) Proceedings of the 9th vertebrate pest conference. University of California, Davis, pp 176–182

  • Jiang GS, Ma JZ, Zhang MH (2006) Spatial distribution of ungulate responses to habitat factors in Wandashan forest region, northeastern China. J Wildl Manag 70:1470–1476

    Google Scholar 

  • Johnson DH (2008) In defense of indices: the case of bird surveys. J Wildl Manag 72:857–868

    Google Scholar 

  • Koichi K, Sangha KK, Cottrell A, Gordon IJ (2012) Aboriginal Rangers' perspectives on feral pigs: are they a pest or resource? A case study in the Wet Tropics World Heritage Area of northern Queensland. J Aust Indig Issues 15:2–19

    Google Scholar 

  • Keuling O, Baubet E, Duscher A, Ebert C, Fischer C, Monaco A, Podgórski T, Prevot C, Ronnenberg K, Sodeikat G, Stier N, Thurfjell H (2013) Mortality rates of wild boar Sus scrofa L. in central Europe. Eur J Wildl Res. doi:10.1007/s10344-013-0733-8

    Google Scholar 

  • Kolodziej K, Theissinger K, Brün J, Schulz H, Schulz R (2012) Determination of the minimum number of microsatellite markers for individual genotyping in wild boar (Sus scrofa) using a test with close relatives. Euro J Wildl Res 58:621–628

    Google Scholar 

  • Krebs CJ (1998) Ecological methodology. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Lapidge S, Derrick M, Conroy J (2003) Adaptive management and demography of feral pigs in southern Queensland. In: Lapidge SJ (ed) Proceedings of the Feral Pig Action Agenda. James Cook University Cairns. Pest Animal Control Cooperative Research Centre, Canberra, pp 28–30

    Google Scholar 

  • Lapidge S, Wishart J (2010) The development of the ultimate feral pig bait hopper—are we heading in the right direction? 2010 International wild pig conference, Pensacola, pp 11–13

  • Laval G, Iannuccelli N, Legault C, Milan D, Groenen MA, Giuffra E, Andersson L, Nissen PH, Jorgensen CB, Beeckmann P, Geldermann H, Foulley JL, Chevalet C, Ollivier L (2000) Genetic diversity of eleven European pig breeds. Genet Sel Evol 32:187–203

    CAS  Google Scholar 

  • Leaper R, Massei G, Gorman ML, Aspinall R (1999) The feasibility of reintroducing wild boar (Sus scrofa) to Scotland. Mamm Rev 29:239–259

    Google Scholar 

  • Leidloff AC (2000) Habitat Utilisation by the Grassland Melomys (Melomys burtoni) and the swamp rat (Rattus lutrelus) in a Coastal Heathland of Bribie Island, South-East Queensland. Dissertation, Queensland University of Technology, Brisbane, Queensland, Australia

  • Lowden S, Finlayson H, Macdonald A, Downing A, Goodman S, Leus K, Kaspe L, Wahyuni E, Archibald A (2002) Application of Sus scrofa microsatellite markers to wild suiformes. Conserv Genet 3:347–350

    CAS  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2004) 100 of the world’s worst invasive alien species: a selection from the Global Invasive Species Database. Invasive Species Specialist Group, Auckland

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends in Ecol Evol 18:189–197

    Google Scholar 

  • Massei G, Bacon P, Genov P (1998) Fallow deer and wild boar pellet group disappearance in a Mediterranean area. J Wildl Manage 62:1086–1094

    Google Scholar 

  • Massei G, Coats J, Quy R, Storer K, Cowan DP (2010) The BOS (Boar-Operated-System): a novel method to deliver baits to wild boar. J Wildl Manage 74:333–336

    Google Scholar 

  • Massei G, Genov P (2004) The environmental impact of wild boar. Galemys 16:135–145

    Google Scholar 

  • Massei G, Jones A, Platt T, Cowan DP (2009) Iophenoxic acid as long-term marker for wild boar. JWildl Manage 73:458–461

    Google Scholar 

  • Massei G, Roy S, Bunting R (2011) Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Hum Wildl Interact 5:79–99

    Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecol 83:2248–2255

    Google Scholar 

  • McCafferty DJ (2007) The value of infrared thermography for research on mammals: previous applications and future directions. Mamm Rev 37:207–223

    Google Scholar 

  • McKelvey KS, Pearson DE (2001) Population estimation with sparse data: the role of estimators versus indices revisited. Can J Zool 79:1754–1765

    Google Scholar 

  • Meek PD (2012) Refining and improving the use of camera trap technology for wildlife management and research in Australia and New Zealand. The Winston Churchill Memorial Trust of Australia, Canberra

    Google Scholar 

  • Meek PD, Ballard G, Fleming P (2012) An Introduction to camera trapping for wildlife surveys in Australia. PestSmart Toolkit publication. Invasive Animals Cooperative Research Centre, Canberra

    Google Scholar 

  • Meriggi A, Grangi A, Mateucci C, Sacci O (1996) The feeding habits of wolves in relation to large prey availability in Northern Italy. Ecogr 19:287–295

    Google Scholar 

  • Meurk CS (2011) Loving nature, killing nature, and the crises of caring: an anthropological investigation of conflicts affecting feral pig management in Queensland. The University of Queensland, Brisbane

    Google Scholar 

  • Meyerson L, Engeman RM, O'Malley R (2008) Tracking non-native vertebrate species: indicator design for the United States. Wildl Res 35:235–241

    Google Scholar 

  • Minta S, Mangel M (1989) A simple population estimate based on simulation for capture–recapture and capture–resight data. Ecol 70:1738–1751

    Google Scholar 

  • Mitchell B, Balogh S (2007) Monitoring techniques for vertebrate pests—feral pigs. NSW Department of Agriculture, Orange

    Google Scholar 

  • Mitchell J (2003) Feral pig research in north Queensland. In: Lapidge SJ (ed) Proceedings of the feral pig action agenda. James Cook University, Cairns. Pest Animal Control Cooperative Research Centre, Canberra, pp 23–25

    Google Scholar 

  • Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:3–135

    Google Scholar 

  • Parker KR (1979) Density estimation by variable area transect. J Wildl Manage 43:484–492

    Google Scholar 

  • Piggott MP, Taylor AC (2003) Extensive evaluation of faecal preservation and DNA extraction methods in Australian native and introduced species. Aust J Zool 51:341–355

    CAS  Google Scholar 

  • Plhal R, Kamler J, Homolka M, Adamec Z (2011) An assessment of the applicability of photo trapping to estimate wild boar population density in a forest environment. Folia Zool 60(3):237–246

    Google Scholar 

  • Poole KG, Mowat G, Fear DA (2001) DNA-based population estimate for grizzly bears Ursus arctos in northeastern British Columbia, Canada. Wildl Biol 7:105–115

    Google Scholar 

  • Poteaux C, Baubet E, Kaminski G, Brandt S, Dobson F, Baudoin C (2009) Socio-genetic structure and mating system of a wild boar population. J Zool 278:116–125

    Google Scholar 

  • Putman RJ (1984) Facts from faeces. Mamm Rev 14:79–97

    Google Scholar 

  • Ramsay BJ (1994) Commercial use of wild animals in Australia. Bureau of Resource Sciences, Australian Government Publishing Service, Canberra

    Google Scholar 

  • Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW (1994) A microsatellite linkage map of the porcine genome. Genet 136:231–245

    CAS  Google Scholar 

  • Rovero F, Marshall AR (2009) Camera trapping photographic rate as an index of density in forest ungulates. J Appl Ecol 46:1011–1017

    Google Scholar 

  • Rowcliffe JM, Field J, Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition. J Appl Ecol 45:1228–1236

    Google Scholar 

  • Royle JA, Nichols JD (2003) Estimating abundance from repeated presence–absence data or point counts. Ecol 84:777–790

    Google Scholar 

  • Ruiz-Fons F, Segales J, Gortazar C (2008) A review of viral diseases of the European wild boar: effects of population dynamics and reservoir role. Vet J 176:158–169

    Google Scholar 

  • Ryan DA, Heywood A (2003) Improving the precision of longitudinal ecological surveys using precisely defined observational units. Environmetrics 14:83–293

    Google Scholar 

  • Sage M, Fourel I, Lahoreau J, Siat V, Berny P, Rossi S (2013) Iophenoxic acid derivatives as markers of oral baits to wildlife: new tools for their detection in tissues of a game species and safety considerations for human exposure. Environ Sci Pollut Res 20:2893–2904

    CAS  Google Scholar 

  • Sarasa M, Sarasa J-A (2013) Intensive monitoring suggests population oscillations and migration in wild boar Sus scrofa in the Pyrenees. Ani Biodivers Cons 36:79–88

    Google Scholar 

  • Saunders G, Bryant H (1988) The evaluation of a feral pig eradication program during a simulated exotic disease outbreak. Aust Wildl Res 15:73–81

    Google Scholar 

  • Saunders G, Kay B, Nicol H (1993) Factors affecting bait uptake and trapping success for feral pigs (Sus scrofa) in Kosciusko National Park. Wildl Res 20:653–665

    Google Scholar 

  • Savarie PJ, Johns BE, Gaddis SE (1992) A review of chemical and particle marking agents used for studying vertebrate pests. Proceedings of the Fifteenth Vertebrate Pest Conference. University of Nebraska, Lincoln, pp 252–257

    Google Scholar 

  • Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto F, Russo V et al (2008) Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Mol Ecol 17:1745–1762

    CAS  Google Scholar 

  • Seward N, VerCauteren K, Witmer G, Engeman R (2004) Feral swine impacts on agriculture and the environment. Sheep and Goat Res J 19:34–40

    Google Scholar 

  • Silveira L, Jacomo ATA, Diniz JAF (2003) Camera trap, line transect census and track surveys: a comparative evaluation. Biol Conserv 114:351–355

    Google Scholar 

  • Siren A, Hambäck P, Machoa J (2004) Including spatial heterogeneity and animal dispersal when evaluating hunting: a model analysis and empirical assessment in an Amazonian community. Conserv Biol 18:1315–1329

    Google Scholar 

  • Speakman JR, Ward S (1998) Infrared thermography: principles and applications. Zool 101:224–232

    Google Scholar 

  • Stanley TR, Royle JA (2005) Estimating site occupancy and abundance using indirect detection indices. J Wildl Manage 69:874–883

    Google Scholar 

  • Stoddart, Griffiths RE, Knowlton FF (2001) Coyote responses to changing jackrabbit abundance affect sheep predation. J Range Manag 54:15–20

    Google Scholar 

  • Sweitzer RA, Van Vuren D, Gardner IA, Boyce WM, Waithman JD (2000) Estimating sizes of wild pig populations in the north and central coast regions of California. J Wildl Manag 64:531–543

    Google Scholar 

  • Theuerkauf J, Rouys S (2008) Habitat selection by ungulates in relation to predation risk by wolves and humans in the Bialowieza Forest, Poland. Forest Ecol Manag 256:1325–1332

    Google Scholar 

  • Thomas J, Engeman RM, Tillman E, Fischer J, Glueck D, Felix R, Orzell S, Avery M (2013) Optimizing line intercept sampling and estimation for feral swine damage levels in sensitive wetland plant communities. Environ Sci Pollut Res 20:1503–1510

    Google Scholar 

  • Thompson WL, White GC, Gowan C (1998) Monitoring vertebrate populations. Academic, San Diego

    Google Scholar 

  • Twigg LE, Lowe TJ, Gray GS, Martin GR, Wheeler AG, Barker W (1998) Spotlight counts, site fidelity and migration of European rabbits (Oryctolagus cuniculus). Wildl Res 25:113–122

    Google Scholar 

  • Vicente J, Segalés J, Höfle U, Balasch M, Plana-Durán J, Domingo M, Gortázar C (2004) Epidemiological study on porcine circovirus type 2 (PCV2) infection in the European wild boar (Sus scrofa). Vet Res 35:243–253

    Google Scholar 

  • USDA/Wildlife Services/National Wildlife Research Center (2011) Development, implementation and evaluation of management tools to reduce feral swine damage at Avon Park AFR, Florida. Annual Report to U.S. DoD/Avon Park Air Force Range. National Wildlife Research Center, Fort Collins

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Engeman.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engeman, R.M., Massei, G., Sage, M. et al. Monitoring wild pig populations: a review of methods. Environ Sci Pollut Res 20, 8077–8091 (2013). https://doi.org/10.1007/s11356-013-2002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2002-5

Keywords

Navigation