Skip to main content
Log in

Oxidative injury and antioxidant genes regulation in cadmium-exposed radicles of six contrasted Medicago truncatula genotypes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Oxidative disorders were triggered in the presence of Cd toxicity in early seedling growth of six Medicago truncatula genotypes. Interactions between root growth inhibition, cadmium uptake, as well as the occurrence of oxidative injury suggest differential responses of the genotypes, with susceptible or tolerant accessions. ROS enhancement was observed in situ and H2O2 content was measured, that did not seem related to tolerance or susceptibility. Oxidative burst impact on cell membrane integrity was analyzed in agreement with MDA content and glucose exudation, which suggest an active role of this burst in susceptible lines. Transcriptional changes in response to cadmium treatment were analyzed on target genes involved in (1) ROS-scavenging enzymes (superoxide dismutase (SOD; EC1.15.1.1) and peroxidase (PRX; EC 1.11.1.7)), (2) reduced glutathione (γ-Glu-Cys-Gly, GSH) metabolism (glutathione-S-transferase (GST; EC: 2.5.1.18) and glutathione reductase (GR; EC 1.8.1.7)), and (3) metal-chelating metabolism (PCS). The susceptible line shows no response or non-timely gene expression patterns. This research work gave an overview of the deleterious effects and oxidative injury of cadmium stress in Medicago truncatula. Oxidative defense efficiency and gene upregulation should explain relative tolerance in tested genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

DW:

Dry weight

FW:

Fresh weight

GR:

Glutathione reductase

GST:

Glutathione-S-transferase

GSH:

Reduced glutathione

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

Tub:

Tubulin

PCS:

Phytochelatin synthase

PCs:

Phytochelatins

PRX:

Peroxidase

Ubq:

Ubiquitin

References

  • Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9:420–433

    Article  CAS  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond C, Arntzen CJ (eds) Photoinhibition. Elsevier, New York, pp 227–297

    Google Scholar 

  • Bartling D, Radzio R, Steiner U, Weiler EW (1993) A glutathione-S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana, molecular cloning and functional characterization. Eur J Biochem 216:579–586

    Article  CAS  Google Scholar 

  • Bewley DJ (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  Google Scholar 

  • Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. C R Biol 328(1):23–31

    Article  CAS  Google Scholar 

  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Cobbett C (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50(10):1268–1280

    Article  CAS  Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (1997) The effect of Cu2+ ion on transport systems of the plant cell plasmalemma. Plant Physiol 114:1313–1325

    CAS  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione-S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  CAS  Google Scholar 

  • El Mansouri I, Mercado JA, Santiago-Domenech N, Pliego-Alfaro F, Valpuesta V, Quesada MA (1999) Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiol Plant 106:355–362

    Article  Google Scholar 

  • Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level ecotoxicology. In: Gerrit S, Bernd M (eds) III. Bioaccumulation and biological effects of chemicals. Wiley and Spektrum Akademischer , New York, pp 587–620

    Google Scholar 

  • Ernst WHO, Krauss GJ, Verkleij JAC, Wesenberg D (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  Google Scholar 

  • Foyer CH, Theodoulou FL, Delrot S (2001) The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci 6:486–492

    Article  CAS  Google Scholar 

  • Garmash EV, Golovko TK (2009) Effect of cadmium on growth and respiration of barley plants grown under two temperature regimes. Russ J Plant Physiol 56:343–347

    Article  CAS  Google Scholar 

  • Gasic K, Korban SS (2006) Heavy metal stress. In: Madhava KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, The Netherlands, pp 219–254

    Chapter  Google Scholar 

  • Ghodratollah S, Rickauer M, Gentzbittel L (2012) Tolerance for cadmium pollution in a core-collection of the model legume, Medicago truncatula L. at seedling stage. Aust J Crop Sci 6:641–648

    Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci 86:6838–6842

    Article  CAS  Google Scholar 

  • Guo-ying Y, Guo-ping W, Chi-quan H (2000) Comparison of physiological responses to oxidative and heavy metal stress in seedlings of rice paddy, Oryza sativa L. J Environ Sci 12:458–462

    Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    Article  CAS  Google Scholar 

  • Hassan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A (2009) Cadmium: toxicity and tolerance in plants. J Environ Biol 30:165–174

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Karlson M, Melzer M, Prpkhorenko I, Johansson T, Wingsle G (2005) Hydrogen peroxide and expression of hipl-superoxide dismutase are associated with the development of secondary cell Walls in Zinnia elegans. J Exp Bot 56:2085–2093

    Article  Google Scholar 

  • Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E (2006) Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere 62:1234–1244

    Article  CAS  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) Biochemistry: a cadmium enzyme from a marine diatom. Nature 435:42–42

    Article  CAS  Google Scholar 

  • Lee S, Korban SS (2002) Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta 215:689–693

    Article  CAS  Google Scholar 

  • Li CX, Feng SL, Shao Y, Jiang LN, Lu XY, Hou XL (2007) Effects of arsenic on seed germination and physiological activities of wheat seedlings. J Environ Sci 19:725–732

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology repair and assessment. Seed Sci Technol 27:2177–2237

    Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovic SD, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration. Ann Bot 89:841–850

    Article  CAS  Google Scholar 

  • Passardi F, Tognolli M, De Meyer M, Penel C, Dunand C (2006) Two cell wall associated peroxidases of Arabidopsis influence root elongation. Planta 223:965–974

    Article  CAS  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Polle A, Schützendübel A (2003) Heavy metal signaling in plants: Linking cellular and oganismic responses. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress, vol 4. Springer, Berlin, pp 187–215

    Chapter  Google Scholar 

  • Pretorius JC, Small JGC (1993) The effect of soaking injury in bean seeds on carbohydrate levels and sucrose phosphate synthase activity during germination. Plant Physiol Biochem 31:25–34

    CAS  Google Scholar 

  • Quiroga M, Guerrero C, Botella MA, Ros Barceló A, Amaya I, Medina MI, Alonso FJ, de Forchetti SM, Tigier H, Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:1119–1128

    Article  CAS  Google Scholar 

  • Rahoui S, Chaoui A, El Ferjani E (2008) Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.). Acta Physiol Plant 30:451–456

    Article  Google Scholar 

  • Rahoui S, Chaoui A, El Ferjani E (2010a) Reserve mobilization disorder in germinating seeds of Vicia faba exposed to cadmium. J Plant Nutr 33:809–817

    Article  CAS  Google Scholar 

  • Rahoui S, Chaoui A, El Ferjani E (2010b) Membrane damage and solute leakage from germinating pea seed under cadmium stress. J Hazard Mater 178:1128–1131

    Article  CAS  Google Scholar 

  • Ranieri A, Castagna A, Pacini J, Baldan B, Mensuali S, Soldatin GF (2003) Early production and scavenging of hydrogen peroxide in the apoplast of sunflower plants exposed to ozone. J Exp Bot 54:2529–2540

    Article  CAS  Google Scholar 

  • Redon PO, Béguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago truncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195

    Article  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  Google Scholar 

  • Satofuka H, Fukui T, Takagi M, Atomi H, Imanaka T (2001) Metal-binding properties of phytochelatins-related peptides. J Inorg Biochem 86:595–602

    Article  CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerance in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  CAS  Google Scholar 

  • Schützendübel A, Nikolova P, Rudolf C, Polle A (2002) Cadmium and H2O2-induced oxidative stress in Populus × canescens roots. Plant Physiol Biochem 40:577–584

    Article  Google Scholar 

  • Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Proc Bull Acad Sci 51:121–124

    Google Scholar 

  • Sfaxi-Bousbih A, Chaoui A, EL Ferjani E (2010) Unsuitable availability of nutrients in germinating bean embryos exposed to copper excess. Biol Trace Elem Res 135:295–303

    Article  CAS  Google Scholar 

  • Singh PK, Tamari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–112

    CAS  Google Scholar 

  • Smiri M, Chaoui A, El Ferjani E (2009) Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium. J Plant Physiol 166:259–269

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2000) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19:201–213

    CAS  Google Scholar 

  • Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138

    Article  CAS  Google Scholar 

  • Turner M, Jauneau A, Genin S, Tavella MJ, Vailleau F, Gentzbittel L, Jardinaud MF (2009) Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiol 150:1713–1722

    Article  CAS  Google Scholar 

  • Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034

    Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+ hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    Article  CAS  Google Scholar 

  • Wierzbicka M, Obidzinska J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Sci 137:155–171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Tunisian Ministry of High Education and Scientific Research. The authors wish to thank Dr. Othman Bousandal for help regarding atomic absorption spectrophotometer analyses, Mr. Bechir Azib, Mr. Abbes Oucherine for technical assistance. The authors acknowledge the help of the Toulouse Réseau Imagerie (TRI) platform for microscopy experiments and the GeT-PlaGe platform facilities for gene expression analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sondès Rahoui.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahoui, S., Ben, C., Chaoui, A. et al. Oxidative injury and antioxidant genes regulation in cadmium-exposed radicles of six contrasted Medicago truncatula genotypes. Environ Sci Pollut Res 21, 8070–8083 (2014). https://doi.org/10.1007/s11356-014-2718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2718-x

Keywords

Navigation