Skip to main content
Log in

Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, a bacterial strain able to use sulcotrione, a β-triketone herbicide, as sole source of carbon and energy was isolated from soil samples previously treated with this herbicide. Phylogenetic study based on16S rRNA gene sequence showed that the isolate has 100 % of similarity with several Bradyrhizobium and was accordingly designated as Bradyrhizobium sp. SR1. Plasmid profiling revealed the presence of a large plasmid (>50 kb) in SR1 not cured under nonselective conditions. Its transfer to Escherichia coli by electroporation failed to induce β-triketone degrading capacity, suggesting that degrading genes possibly located on this plasmid cannot be expressed in E. coli or that they are not plasmid borne. The evaluation of the SR1 ability to degrade various synthetic (mesotrione and tembotrione) and natural (leptospermone) triketones showed that this strain was also able to degrade mesotrione. Although SR1 was able to entirely dissipate both herbicides, degradation rate of sulcotrione was ten times higher than that of mesotrione, showing a greater affinity of degrading-enzyme system to sulcotrione. Degradation pathway of sulcotrione involved the formation of 2-chloro-4-mesylbenzoic acid (CMBA), previously identified in sulcotrione degradation, and of a new metabolite identified as hydroxy-sulcotrione. Mesotrione degradation pathway leads to the accumulation of 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) and 2-amino-4 methylsulfonylbenzoic acid (AMBA), two well-known metabolites of this herbicide. Along with the dissipation of β-triketones, one could observe the decrease in 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition, indicating that toxicity was due to parent molecules, and not to the formed metabolites. This is the first report of the isolation of bacterial strain able to transform two β-triketones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alferness P, Wiebe L (2002) Determination of mesotrione residues and metabolites in crops, soil, and water by liquid chromatography with fluorescence detection. J Agric Food Chem 50(14):3926–3934

    Article  CAS  Google Scholar 

  • Anderson JPE (1984) Herbicide degradation in soil—influence of microbial biomass. Soil Biol Biochem 16(5):483–489

    Article  CAS  Google Scholar 

  • Arbeli Z, Fuentes CL (2007) Accelerated biodegradation of pesticides: an overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. Crop Prot 26(12):1733–1746

    Article  CAS  Google Scholar 

  • Assinder SJ, Williams PA (1990) The TOL plamids—determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31:1–69

    Article  CAS  Google Scholar 

  • Batisson I, Crouzet O, Besse-Hoggan P, Sancelme M, Mangot J-F, Mallet C, Bohatier J (2009) Isolation and characterization of mesotrione-degrading Bacillus sp from soil. Environ Pollut 157(4):1195–1201

    Article  CAS  Google Scholar 

  • Bonnet JL, Bonnemoy F, Dusser M, Bohatier J (2008) Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri. Arch Environ Contam Toxicol 55(4):576–583

    Article  CAS  Google Scholar 

  • Calvayrac C, Martin-Laurent F, Faveaux A, Picault N, Panaud O, Coste C-M, Chaabane H, Cooper J-F (2012) Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil. Pest Manag Sci 68(3):340–347

    Article  CAS  Google Scholar 

  • Calvayrac C, Romdhane S, Barthelmebs L, Rocaboy E, Cooper J-F, Bertrand C (2014) Growth abilities and phenotype stability of a sulcotrione-degrading Pseudomonas sp. isolated from soil. Int Biodeterior Biodegrad 91:104–110

    Article  CAS  Google Scholar 

  • Chaabane H, Cooper JF, Azouzi L, Coste CM (2005) Influence of soil properties on the adsorption–desorption of sulcotrione and its hydrolysis metabolites on various soils. J Agric Food Chem 53(10):4091–4095

    Article  CAS  Google Scholar 

  • Chaabane H, Vulliet E, Calvayrac C, Coste CM, Cooper JF (2008) Behaviour of sulcotrione and mesotrione in two soils. Pest Manag Sci 64(1):86–93

    Article  CAS  Google Scholar 

  • Crouzet O, Batisson I, Besse-Hoggan P, Bonnemoy F, Bardot C, Poly F, Bohatier J, Mallet C (2010) Response of soil microbial communities to the herbicide mesotrione: a dose–effect microcosm approach. Soil Biol Biochem 42(2):193–202

    Article  CAS  Google Scholar 

  • Dayan FE, Duke SO, Sauldubois A, Singh N, McCurdy C, Cantrell C (2007) p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for beta-triketones from Leptospermum scoparium. Phytochemistry 68(14):2004–2014

    Article  CAS  Google Scholar 

  • Devers M, El Azhari N, Kolic N-U, Martin-Laurent F (2007) Detection and organization of atrazine-degrading genetic potential of seventeen bacterial isolates belonging to divergent taxa indicate a recent common origin of their catabolic functions. FEMS Microbiol Lett 273(1):78–86

    Article  CAS  Google Scholar 

  • Durand S, Amato P, Sancelme M, Delort AM, Combourieu B, Besse-Hogan P (2006) First isolation and characterization of a bacterial strain that biotransforms the herbicide mesotrione. Lett Appl Microbiol 43(2):222–228

    Article  CAS  Google Scholar 

  • Durand S, Sancelme M, Besse-Hoggan P, Combourieu B (2010) Biodegradation pathway of mesotrione: complementarities of NMR, LC-NMR and LC-MS for qualitative and quantitative metabolic profiling. Chemosphere 81(3):372–380

    Article  CAS  Google Scholar 

  • Dyson JS, Beulke S, Brown CD, Lane MCG (2002) Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications. J Environ Qual 31(2):613–618

    Article  CAS  Google Scholar 

  • Finan TM, Kunkel B, Devos GF, Signer ER (1986) 2nd symbiotic mehaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167(1):66–72

    CAS  Google Scholar 

  • Goujon E, Sta C, Trivella A, Goupil P, Richard C, Ledoigt G (2014) Genotoxicity of sulcotrione pesticide and photoproducts on Allium cepa root meristem. Pestic Biochem Physiol 113:47–54

    Article  CAS  Google Scholar 

  • Gürtler V, Stanisich V (1996) New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiol 142(1):3–16

  • Gu T, Zhou C, Sorensen SR, Zhang J, He J, Yu P, Yan X, Li S (2013) The novel bacterial N-demethylase PdmAB is responsible for the initial step of N, N-dimethyl-substituted phenylurea herbicide degradation. Appl Environ Microbiol 79(24):7846–7856

    Article  CAS  Google Scholar 

  • Huong NL, Itoh K, Suyama K (2007) Diversity of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading bacteria in Vietnamese soils. Microbes Environ 22(3):243–256

    Article  Google Scholar 

  • Hussain S, Arshad M, Springael D, Sørensen SR, Bending GD, Devers-Lamrani M, Maqboola Z, Martin-Laurent F (2015) Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: a review. Crit Rev Environ Sci Technol. doi:10.1080/10643389.2014.1001141

  • Joly P, Bonnemoy F, Charvy J-C, Bohatier J, Mallet C (2013) Toxicity assessment of the maize herbicides S-metolachlor, benoxacor, mesotrione and nicosulfuron, and their corresponding commercial formulations, alone and in mixtures, using the Microtox® test. Chemosphere 93(10):2444–2450

    Article  CAS  Google Scholar 

  • Jovic M, Manojlovic D, Stankovic D, Dojcinovic B, Obradovic B, Gasic U, Roglic G (2013) Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes. J Hazard Mater 260:1092–1099

    Article  CAS  Google Scholar 

  • Kamagata Y, Fulthorpe RR, Tamura K, Takami H, Forney LJ, Tiedje JM (1997) Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63(6):2266–2272

    CAS  Google Scholar 

  • Karns JS, Mulbry WW, Nelson JO, Kearney PC (1986) Metabolism of carbofuran by a pure bacterial culture. Pestic Biochem Physiol 25(2):211–217

    Article  CAS  Google Scholar 

  • Karpouzas DG, Fotopoulou A, Menkissoglu-Spiroudi U, Singh BK (2005) Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiol Ecol 53(3):369–378

    Article  CAS  Google Scholar 

  • Khurana JL, Jackson CJ, Scott C, Pandey G, Horne I, Russell RJ, Herlt A, Easton CJ, Oakeshott JG (2009) Characterization of the phenylurea hydrolases A and B: founding members of a novel amidohydrolase subgroup. Biochem J 418:431–441

    Article  CAS  Google Scholar 

  • Lee DL, Prisbylla MP, Cromartie TH, Dagarin DP, Howard SW, Provan WM, Ellis MK, Fraser T, Mutter LC (1997) The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci 45(5):601–609

    CAS  Google Scholar 

  • Ma R, Kaundun SS, Tranel PJ, Riggins CW, McGinness DL, Hager AG, Hawkes T, McIndoe E, Riechers DE (2013) Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. Plant Physiol 163(1):363–377

    Article  CAS  Google Scholar 

  • Meazza G, Scheffler BE, Tellez MR, Rimando AM, Romagni JG, Duke SO, Nanayakkara D, Khan IA, Abourashed EA, Dayan FE (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 60(3):281–288

    Article  CAS  Google Scholar 

  • Mitchell G, Bartlett DW, Fraser TEM, Hawkes TR, Holt DC, Townson JK, Wichert RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57(2):120–128

    Article  CAS  Google Scholar 

  • Olchanheski LR, Dourado MN, Beltrame FL, Zielinski AAF, Demiate IM, Pileggi SAV, Azevedo RA, Sadowsky MJ, Pileggi M (2014) Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-alpha. PLoS ONE 9(6). doi:10.1371/journal.pone.0099960

  • Ozawa T, Yoshida R, Wakashiro Y, Hase H (2004) Improvement of simazine degradation by inoculation of corn and soybean plants with rhizobacteria. Soil Sci Plant Nutr 50(8):1295–1299

    Article  CAS  Google Scholar 

  • Perriere G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78(5):364–369

    Article  CAS  Google Scholar 

  • Pileggi M, Veiga Pileggi SA, Olchanheski LR, Garbugio da Silva PA, Gonzalez AMM, Koskinen WC, Barber B, Sadowsky MJ (2012) Isolation of mesotrione-degrading bacteria from aquatic environments in Brazil. Chemosphere 86(11):1127–1132

    Article  CAS  Google Scholar 

  • Rocaboy-Faquet E, Noguer T, Romdhane S, Bertrand C, Dayan FE, Barthelmebs L (2014) Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors. Appl Microbiol Biotechnol 98(16):7243–7252

    Article  CAS  Google Scholar 

  • Rouchaud J, Neus O, Bulcke R, Cools K, Eelen H (1998) Sulcotrione soil metabolism in summer corn crops. Bull Environ Contam Toxicol 61(5):669–676

    Article  CAS  Google Scholar 

  • Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36(2-3):211–222

    Article  CAS  Google Scholar 

  • Satsuma K, Hayashi O, Sato K, Ohyama K, Maki S, Hashimura M, Kato Y (2000) Isolation of pentoxazone-transforming microorganisms from soil: their characteristics and metabolites. J Pestic Sci 25(4):357–364

    Article  CAS  Google Scholar 

  • Satsuma K, Masuda M, Sato K (2013) A role of Bradyrhizobium elkanii and closely related strains in the degradation of methoxychlor in soil and surface water environments. Biosci Biotechnol Biochem 77(11):2222–2227

    Article  CAS  Google Scholar 

  • Schulz A, Ort O, Beyer P, Kleinig H (1993) SC-0051, a 2-benzoyl-cyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett 318(2):162–166

    Article  CAS  Google Scholar 

  • Shaner DL (2004) Herbicide safety relative to common targets in plants and mammals. Pest Manag Sci 60(1):17–24

    Article  CAS  Google Scholar 

  • Siehl DL, Tao Y, Albert H, Dong Y, Heckert M, Madrigal A, Lincoln-Cabatu B, Lu J, Fenwick T, Bermudez E, Sandoval M, Horn C, Green JM, Hale T, Pagano P, Clark J, Udranszky IA, Rizzo N, Bourett T, Howard RJ, Johnson DH, Vogt M, Akinsola G, Castle LA (2014) Broad 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicide tolerance in soybean with an optimized enzyme and expression cassette. Plant Physiol 166(3):1162–1176

    Article  CAS  Google Scholar 

  • Strong LC, Rosendahl C, Johnson G, Sadowsky MJ, Wackett LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68(12):5973–5980

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. NAR 25(24):4876–4882

    Article  CAS  Google Scholar 

  • Topp E (2003) Bacteria in agricultural soils: diversity, role and future perspectives. Can J Soil Sci 83(3):303–309

    Article  CAS  Google Scholar 

  • Udikovic-Kolic N, Scott C, Martin-Laurent F (2012) Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 96(5):1175–1189

    Article  CAS  Google Scholar 

  • Van der Meer JR, Devos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56(4):677–694

    Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. International biological programme handbook No. 15, Blackwell Science Publications. Oxford, England

  • Walker A, Welch SJ (1991) Enhanced degradation of some soil-applied herbicides. Weed Res 31(1):49–57

    Article  CAS  Google Scholar 

  • Wu N, Jin Y, Jin F, Tan Y, Tao H, Zheng M, Chen R, Liu K, Gao M (2011) Effects of sulcotrione 2-(2-chloro-4-mesylbenzoyl)-cyclohexane-1,3-dione on enzymes involved in tyrosine catabolism and the extent of the resulting tyrosinemia and its relationship with corneal lesions in rats. Pestic Biochem Physiol 99(2):162–169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French “Agence National de la Recherche” under TRICETOX project, number ANR-13-CESA-0002. Leptospermone was kindly provided by Franck E. Dayan (Natural Products Utilization Research Unit, USDA). The authors would like to thank Nathalie Bontemps (LCBE-CRIOBE-USR 3278 CNRS EPHE, UPVD) for sulcotrione metabolite analysis. The authors declare that they have no conflict of interest. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

All authors agreed to be listed and have approved of the manuscript, its content, and its submission to Environmental Science and Pollution Research. It has not been submitted or published elsewhere, whether partly or fully. All authors are in agreement with the ethical rules of ESPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Barthelmebs.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data Fig. 1

Degradation curves of triketone herbicides by Bradyrhizobium sp. SR1 in resting cell experiments. a Degradation of sulcotrione at 35 mg L−1 (106 μM) and appearance of CMBA expressed in μM. Transitory accumulation of hydroxy-sulcotrione in the medium is represented in arbitrary unit. b Degradation of mesotrione at 35 mg L−1 (103 μM) and accumulation of MNBA and AMBA in the medium. Standard deviations are indicated (n = 3). (PPTX 78 kb)

Supplementary data Fig. 2

Proposed scheme for mesotrione metabolic pathway of Bradyrhizobium sp. SR1 and Bacillus sp. 3B6. SR1 (1) Mesotrione is transformed into MNBA and AMBA within two different pathways. SR1 (2) Mesotrione is first transformed into MNBA, which is then transformed into AMBA. Dashed arrows indicate hypothetical degradation pathway. 3B6 (1) Major pathway of mesotrione degradation. 3B6 (2) Minor pathway of mesotrione degradation from Durand et al. 2010. (PPTX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romdhane, S., Devers-Lamrani, M., Martin-Laurent, F. et al. Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides. Environ Sci Pollut Res 23, 4138–4148 (2016). https://doi.org/10.1007/s11356-015-4544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4544-1

Keywords

Navigation