Skip to main content
Log in

Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Two dominant cyanobacterial species, Phormidium lucidum and Oscillatoria subbrevis, isolated from submerged polyethylene carry bags in domestic sewage water were found to be capable of degrading low-density polyethylene (LDPE) sheets efficiently. The FT-IR, SEM, NMR, CHN content, thermal, and tensile strength of PE were monitored for structural, morphological, and chemical changes of PE. The CHN analysis corroborated about 4% carbon utilization by the cyanobacterial species from the PE. The rapid growth of cyanobacterial species on the PE surface suggested that the microorganisms continued to gain energy from the PE. The reduction in lamellar thickness, weight, and crystallinity of the cyanobacterial-treated PE pointed to an efficient biodegradation process without any pro-oxidant additives or pretreatment. Alteration in bond indices computed from FT-IR spectroscopy revealed changes in functional group and side chain features indicating biodegradation. The enhanced laccase and manganese peroxidase activity corroborated the biodegradation. The 13C-NMR spectroscopy of the PE is consistent with short branching providing further evidence of biodegradation. Scanning electron microscopy and optical microscopy exhibited large grooves on the surface suggesting significant disruption of polyethylene structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

LDPE:

Low-density polyethylene

FT-IR:

Fourier transform infrared

SEM:

Scanning electron microscopy

NMR:

Nuclear magnetic resonance

CHN:

Carbon, hydrogen, nitrogen

APHA:

American Public Health Association

TGA-DSC:

Thermogravimetry-differential scanning calorimetry

ASTM:

American Society for Testing and Materials

References

  • Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, Hameed A, Manzoor N, Manzoor I, Muhammad S (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ Sci Pollut Res 25:7287–7298. https://doi.org/10.1007/s11356-018-1234-9

    Article  CAS  Google Scholar 

  • Albertsson AC (1980) The shape of the biodegradation curve for low and high density polyethylene in prolonged series of experiments. Eur Polym J 16:623–630

    Article  CAS  Google Scholar 

  • Albertsson AC, Andersson SO, Karlsson S (1987) The mechanisms of biodegradation of polyethylene. PolymDegradStab 18:73–87

    CAS  Google Scholar 

  • Albertsson AC, Barenstedt C, Karlsson S (1994) Degradation of enhanced environmentally degradable polyethylene in biological aqueous media: mechanisms during the first stages. J Appl Polym Sci 51:1097–1105

    Article  CAS  Google Scholar 

  • APHA (2005) Standard methods for examination of water and wastewater. 21st ed.pub. APHA, AWAA, WPCF, Washington DC

    Google Scholar 

  • Arnaud A, Dabin P, Lemaire J, Al-Malaia S, Chohan S, Coker M, Scott G, Flauve A, Maaroufi A (1994) Photooxidation and biooxidation of commercial photodegradable polyethylenes. Polym Degrad Stab 46:211–224

    Article  CAS  Google Scholar 

  • Arutchelvi J, Sudhakar K, Arthatkar A, Doble M, Bhaduri S (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22

    CAS  Google Scholar 

  • ASTM (1993) ASTM standards on environmentally degradable plastics. ASTM Publication Code Number (PCN): #003–420093-19. ASTM, West Conshohocken

    Google Scholar 

  • ASTM (2000) ASTM standards pertaining to the biodegradability and compostability of plastics. ASTM, West Conshohocken

    Google Scholar 

  • Awasthi S, Srivastava N, Singh T, Tiwary D, Mishra PK (2017a) Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5. 3 Biotech 7:73. https://doi.org/10.1007/s13205-017-0699-4

    Article  Google Scholar 

  • Awasthi S, Srivastava P, Singh P, Tiwary D, Mishra PK (2017b) Biodegradation of thermally treated high density polyethylene (HDPE) by Klebsiella pneumonia CH001. 3 Biotech 7:332. https://doi.org/10.1007/s13205-017-0959-3

    Article  Google Scholar 

  • Balasubramanian V, Nataraja K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Kannan VR (2010) High-density polyethylene (HDPE) degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211

    CAS  Google Scholar 

  • Balasubramanian V, Nataraja K, Rajeshkannan V, Perumal P (2014) Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments. Environ Sci Pollut Res 21:12549–12562. https://doi.org/10.1007/s11356-014-3191-2

    Article  CAS  Google Scholar 

  • Blitz JP, McFaddin DC (1994) The characterization of short chain branching in polyethylene using Fourier transform infrared spectroscopy. J Appl Polym Sci 51:13–20

    Article  CAS  Google Scholar 

  • Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81:441–452

    Article  CAS  Google Scholar 

  • Brandolini AJ, Hills DD (2000) NMR spectra of polymers and polymer additives. Mobil Chemical Company Edison, New Jersey

    Book  Google Scholar 

  • Caruso G (2015) Plastic degrading microorganisms as a tool for bioremediation of plastic contamination in aquatic environments. J Pollut Eff Cont 3:e112. https://doi.org/10.4172/2375-4397.1000e112

    Article  Google Scholar 

  • Chiellini E, Corti A, Swift G (2003) Biodegradation of thermally-oxidized fragmented low-density polyethylene. Polym Degrad Stab 81:341–351

    Article  CAS  Google Scholar 

  • Chinaglia S, Tosin M, Degli-Innocenti F (2018) Biodegradation rate of biodegradable plastics at molecular level. Polym Degrad Stab 147:237–244. https://doi.org/10.1016/j.polymdegradstab.2017.12.011

    Article  CAS  Google Scholar 

  • Corti A, Muniyasamy S, Vitali M, Inam SH, Chiellini E (2010) Oxidation and biodegradation of polyethylene films containing pro-oxidant additives: synergistic effects of sunlight exposure, thermal aging and fungal biodegradation. Polym Degrad Stab 95:1106–1114

    Article  CAS  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Monograph. I.C.A.R., New Delhi

    Google Scholar 

  • Devi AK, Lakshmi BKM, Hemalatha KPJ (2015) Degradation of PE by Achromobacter denitrificans strain S1, a novel marine isolate. Int J Recent Sci Res 6:5454–5464

    Google Scholar 

  • Dey U, Mondal NK, Das K, Dutta S (2012) An approach to polymer degradation through microbes. IOSR J Pharm 2:385–388

    Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  CAS  Google Scholar 

  • Gardette JL (2006) Infrared spectroscopy in the study of the weathering and degradation of polymers. Handbook of vibrational spectroscopy. Anal Chem John Wiley and Sons, New York, pp 2514–2522

    Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056

    Article  CAS  Google Scholar 

  • Ghosh SK, Pal S, Ray S (2013) Study of microbes having potentiality for biodegradation of plastics. Environ Sci Pollut Res 20:4339–4355. https://doi.org/10.1007/s11356-013-1706-x

    Article  CAS  Google Scholar 

  • Gu J-D (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegrad 52:63–91

    Article  Google Scholar 

  • Gu J-D (2017) Biodegradability of plastics: the pitfalls. Appl Environ Biotechnol l2:59–61

    Google Scholar 

  • Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100

    Article  CAS  Google Scholar 

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology: vol. 5B. Academic Press, London, pp 209–344

    Google Scholar 

  • Hoffman JD, Davis GT, Lauritzen JI Jr (1976) Treatise on solid state chemistry. Plenum, New York

    Google Scholar 

  • Ibiene AA, Stanley HO, Immanuel OM (2013) Biodegradation of polyethylene by Bacillus sp. indigenous to the Niger Delta mangrove swamp. Nigeria J Biotechnol 26:68–79

    Google Scholar 

  • Karlsson S, Albertsson AC (1998) Biodegradable polymers and environmental interaction. PolymEngSci 38:1251–1253

    CAS  Google Scholar 

  • Khabbaz F, Albertsson AC, Karlsson S (1999) Chemical and morphological changes of environmentally degradable poly (ethylene) films exposed to thermo-oxidation. Polym Degrad Stab 63:127–138

    Article  CAS  Google Scholar 

  • Kobayasi H (1961) Chlorophyll content in sessile algal community of Japanese Mountain River. Bot Mag Tokyo 7:228–235

    Article  Google Scholar 

  • Koutny M, Sancelme M, Dabin C, Pichon N, Delort A-M, Lemaire J (2006a) Acquired biodegradability of polyethylenes containing pro-oxidant additives. Polym Degrad Stab 91:1495–1503

    Article  CAS  Google Scholar 

  • Koutny M, Lemaire J, Delort A-M (2006b) Biodegradation of polyethylene films with prooxidant additives. Chemosphere 64:1243–1252

    Article  CAS  Google Scholar 

  • Kumar RV, Kanna GR, Elumalai S (2017) Biodegradation of polyethylene by green photosynthetic microalgae. J Bioremediat Biodegrad 8:381–388

    Google Scholar 

  • Longo C, Savaris M, Zeni M, Brandalise RN, Grisa AMC (2011) Degradation study of polypropylene (PP) and bioriented polypropylene (BOPP) in the environment. Mater Res 14:442–448

    Article  CAS  Google Scholar 

  • Manzur A, Limón-González M, Favela-Torres E (2004) Biodegradation of physicochemically treated LDPE by a consortium of filamentous fungi. J Appl Polym Sci 92:265–271

    Article  CAS  Google Scholar 

  • Miyazaki K, Arai T, Shibata K, Terano M, Nakatani H (2012) Study of biodegradation mechanism of novel oxo-biodegradable polypropylenes in an aqueous medium. Polym Degrad Stab 97:2177–2184

    Article  CAS  Google Scholar 

  • Myers J, Kratz KA (1955) Relation between pigment content and photosynthetic characteristics in a bluegreen alga. J Gen Physiol 39:11–22

    Article  CAS  Google Scholar 

  • Nanda S, Sahu SS, Abraham J (2010) Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J Appl Sci Environ Manag 14:57–60

    CAS  Google Scholar 

  • Nayak P, Tiwari A (2011) Biodegradation of polythene and plastic by the help of microbial tools: a recent approach. Int J Biomed Adv Res 2:344–355

    Article  Google Scholar 

  • Ojo OA (2007) Molecular strategies of microbial adaptation to xenobiotics in natural environment. Biotechnol Mol Biol Rev 2:1–13

    Google Scholar 

  • Papinutti L, Martinez JM (2006) Production and characterization of laccase and manganese peroxidase from the ligninolytic fungus Fomessclerodermeus. J Technol Biotechnol 81:1064–1070

    Article  CAS  Google Scholar 

  • Patani R, Sorrentino A (2013) Influence of crystallinity on the biodegradation rate of injection-moulded poly (lactic acid) samples in controlled composting conditions. Polym Degrad Stab 98:1089–1096

    Article  Google Scholar 

  • Pathak VM, Navneet (2017) Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess 4:1–31

    Article  Google Scholar 

  • Potts JE (1984) Encyclopedia of chemical technology, Second edn. John Wiley, New York

  • Prescott GW (1952) Algae of Western Great Lakes area. Ottokoeltz. Sci Publisher, West Germany

    Google Scholar 

  • Qi X, Ren Y, Wang X (2017) New advances in the biodegradation of poly (lactic) acid. Int Biodeterior Biodegrad 117:215–223

    Article  CAS  Google Scholar 

  • Raaman N, Rajitha N, Jayshree A, Jegadeesh R (2012) Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Indus Res 1:313–316

    CAS  Google Scholar 

  • Rajandas H, Parimannan S, Sathasivam K, Ravichandran M, Yin LSA (2012) Novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Polym Test 31:1094–1099

    Article  CAS  Google Scholar 

  • Restrepo-Flórez JM, Bassi A, Tompson MR (2014) Microbial degradation and deterioration of polyethylene- a review. Int Biodeterior Biodegrad 88:83–90

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stenier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C (2008) Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab 93:1917–1922

    Article  CAS  Google Scholar 

  • Sanin SL, Sanin FD, Bryers JD (2003) Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochem 38:909–914

    Article  CAS  Google Scholar 

  • Santo M, Weitsman R, Sivan A (2012) The role of the copper binding enzyme-laccase-in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 208:1–7

    Google Scholar 

  • Sarmah P, Rout J (2017) Colonisation of Oscillatoria on submerged polythenes in domestic sewage water of Silchar town, Assam (India). J Algal Biomass Util 8:135–144

    Google Scholar 

  • Seneviratne G, Tennakoon NS, Weerasekara MLMAW, Nandasena KA (2006) Polyethylene biodegradation by a developed Penicillium-Bacillus biofilm. Curr Sci 90:20–21

    CAS  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. BiotechnolAdv 26:246–265

    CAS  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Akhter JI (2009) Isolation of Fusarium sp. AF4 from sewage sludge, with the ability to adhere the surface of polyethylene. Afr J Microbiol Res 3:658–663

    CAS  Google Scholar 

  • Sharma M, Dubey A, Pareek A (2014) Algal flora on degrading polythene waste. CIBTech J Microbiol 3:43–47

    Google Scholar 

  • Skariyachan S, Manjunatha V, Sultana S, Jois C, Bai V, Vasist KR (2016) Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environ Sci Pollut Res 23:18307–18319. https://doi.org/10.1007/s11356-016-7000-y

    Article  CAS  Google Scholar 

  • Spiro RG (1966) Analysis of sugars found in glycoproteins. Methods Enzymol 8:3–26

    Article  CAS  Google Scholar 

  • Suseela MR, Toppo K (2007) Algal biofilms on polythenes and its possible degradation. Curr Sci 92:285–287

    Google Scholar 

  • Tribedi P, Sil AK (2013) Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ Sci Pollut Res 20:4146–4153. https://doi.org/10.1007/s11356-012-1378-y

    Article  CAS  Google Scholar 

  • Underwood GJC, Paterson DM, Parkes RJ (1995) The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnol Oceanogr 40(7):1243–1253. https://doi.org/10.4319/lo.1995.40.7.1243

    Article  CAS  Google Scholar 

  • Vasile C (1993) Degradation and decomposition. In: Vasile C, Seymour RB (eds) Handbook of polyolefins: synthesis and properties. Marcel Dekker Inc, New York

    Google Scholar 

  • Yoon MG, Jeon JH, Kim MN (2012) Biodegradation of polyethylene by a soil bacterium and Alkβ cloned recombinant cell. J Bioremed Biodegr 3:145

    CAS  Google Scholar 

  • Zerbi G, Gallino G, Del FN, Baini L (1989) Structural depth profiling in polyethylene by multiple internal reflection infra-red spectroscopy. Polymer 30:2324–2327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sophisticated Analytical Instrumentation Centre (SAIC), Tezpur University, Napaam, Assam, India, for providing some instrumentation facilities. One of the author (PS) acknowledge University Grant Commission (UGC) for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayashree Rout.

Ethics declarations

There is no research involving human participants and or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmah, P., Rout, J. Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environ Sci Pollut Res 25, 33508–33520 (2018). https://doi.org/10.1007/s11356-018-3079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3079-7

Keywords

Navigation