Skip to main content
Log in

Assessing the ratio of Bacillus spores and vegetative cells by shotgun proteomics

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mass spectrometry for rapid identification of microorganisms is expanding over the last years because this approach is quick. This methodology provides a decisive interest to fight against bioterrorism as it is applicable whatever the pathogen to be considered and often allows subtyping which may be crucial for confirming a massive and widespread attack with biological agents. Here, we present a methodology based on next-generation proteomics and tandem mass spectrometry for discovering numerous protein biomarkers allowing the discrimination of spores and vegetative cells of Bacillus atrophaeus, a biowarfare simulant. We propose a global quantitative evaluation of the two groups of discriminant biomarkers based on their aggregated normalized spectral abundance factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armengaud J (2013) Microbiology and proteomics, getting the best of both worlds! Environ Microbiol 15:12–23

    CAS  Google Scholar 

  • Armengaud J (2016) Next-generation proteomics faces new challenges in environmental biotechnology. Curr Opin Biotechnol 38:174–182

    CAS  Google Scholar 

  • Armengaud J (2017) Striking against bioterrorism with advanced proteomics and reference methods. Proteomics 17

  • Baier D, Reineke K, Doehner MA, Knorr D (2011) Fluorescence-based methods for the detection of pressure-induced spore germination and inactivation. High Pressure Res 31:110–115

    CAS  Google Scholar 

  • Barras V, Greub G (2014) History of biological warfare and bioterrorism. Clin Microbiol Infect 20:497–502

    CAS  Google Scholar 

  • Buhr TL, McPherson DC, Gutting BW (2008) Analysis of broth-cultured Bacillus atrophaeus and Bacillus cereus spores. J Appl Microbiol 105:1604–1613

    CAS  Google Scholar 

  • Carvalho PC, Fischer JS, Xu T, Yates JR 3rd, Barbosa VC (2012) PatternLab: from mass spectra to label-free differential shotgun proteomics. Curr Protoc Bioinformatics Chapter 13:Unit13.19

    Google Scholar 

  • Castanha ER, Fox A, Fox KF (2006) Rapid discrimination of Bacillus anthracis from other members of the B. cereus group by mass and sequence of “intact” small acid soluble proteins (SASPs) using mass spectrometry. J Microbiol Methods 67:230–240

    CAS  Google Scholar 

  • Chenau J, Fenaille F, Caro V, Haustant M, Diancourt L, Klee SR, Junot C, Ezan E, Goossens PL, Becher F (2014) Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches. Mol Cell Proteomics 13:716–732

    CAS  Google Scholar 

  • Chenau J, Fenaille F, Ezan E, Morel N, Lamourette P, Goossens PL, Becher F (2011) Sensitive detection of Bacillus anthracis spores by immunocapture and liquid chromatography-tandem mass spectrometry. Anal Chem 83:8675–8682

    CAS  Google Scholar 

  • Chitlaru T, Israeli M, Bar-Haim E, Elia U, Rotem S, Ehrlich S, Cohen O, Shafferman A (2016) Next-generation Bacillus anthracis live attenuated spore vaccine based on the htrA(−) (high temperature requirement A) Sterne strain. Sci Rep 6:18908

    CAS  Google Scholar 

  • Christie-Oleza JA, Miotello G, Armengaud J (2013a) Proteogenomic definition of biomarkers for the large Roseobacter clade and application for a quick screening of new environmental isolates. J Proteome Res 12:5331–5339

    CAS  Google Scholar 

  • Christie-Oleza JA, Pina-Villalonga JM, Bosch R, Nogales B, Armengaud J (2012) Comparative proteogenomics of twelve Roseobacter exoproteomes reveals different adaptive strategies among these marine bacteria. Mol Cell Proteomics 11:M111.013110

    Google Scholar 

  • Christie-Oleza JA, Pina-Villalonga JM, Guerin P, Miotello G, Bosch R, Nogales B, Armengaud J (2013b) Shotgun nanoLC-MS/MS proteogenomics to document MALDI-TOF biomarkers for screening new members of the Ruegeria genus. Environ Microbiol 15:133–147

    CAS  Google Scholar 

  • Clair G, Armengaud J, Duport C (2012) Restricting fermentative potential by proteome remodeling: an adaptive strategy evidenced in Bacillus cereus. Mol Cell Proteomics 11:M111.013102

    Google Scholar 

  • Czerwieniec GA, Russell SC, Tobias HJ, Pitesky ME, Fergenson DP, Steele P, Srivastava A, Horn JM, Frank M, Gard EE, Lebrilla CB (2005) Stable isotope labeling of entire Bacillus atrophaeus spores and vegetative cells using bioaerosol mass spectrometry. Anal Chem 77:1081–1087

    CAS  Google Scholar 

  • de Hoon MJ, Eichenberger P, Vitkup D (2010) Hierarchical evolution of the bacterial sporulation network. Curr Biol 20:R735–R745

    Google Scholar 

  • Dickinson DN, La Duc MT, Haskins WE, Gornushkin I, Winefordner JD, Powell DH, Venkateswaran K (2004) Species differentiation of a diverse suite of Bacillus spores by mass spectrometry-based protein profiling. Appl Environ Microbiol 70:475–482

    CAS  Google Scholar 

  • Dupierris V, Masselon C, Court M, Kieffer-Jaquinod S, Bruley C (2009) A toolbox for validation of mass spectrometry peptides identification and generation of database: IRMa. Bioinformatics 25:1980–1981

    CAS  Google Scholar 

  • Duriez E, Armengaud J, Fenaille F, Ezan E (2016) Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. J Mass Spectrom 51:183–199

    CAS  Google Scholar 

  • Elias JE, Gygi SP (2010) Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol 604:55–71

    CAS  Google Scholar 

  • Eng C, Blouin Y, Ding N, Larigauderie G, Ramisse V, Pujol C (2015) Draft genome sequence of the biowarfare simulant Bacillus atrophaeus strain 930029. Genome Announc 3

  • Fischer K, Hahn D, Hönerlage W, Zeyer J (1995) In situ detecton of spores and vegetative cells of Bacillus megaterium in soil by whole cell hybridization. Syst Appl Microbiol 18:265–273

    Google Scholar 

  • Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ (2012) Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 14:2870–2890

    CAS  Google Scholar 

  • Harrold ZR, Hertel MR, Gorman-Lewis D (2011) Optimizing Bacillus subtilis spore isolation and quantifying spore harvest purity. J Microbiol Methods 87:325–329

    Google Scholar 

  • Hartmann EM, Allain F, Gaillard JC, Pible O, Armengaud J (2014) Taking the shortcut for high-throughput shotgun proteomic analysis of bacteria. Methods Mol Biol 1197:275–285

    CAS  Google Scholar 

  • Huang CM, Foster KW, DeSilva TS, Van Kampen KR, Elmets CA, Tang DC (2004) Identification of Bacillus anthracis proteins associated with germination and early outgrowth by proteomic profiling of anthrax spores. Proteomics 4:2653–2661

    CAS  Google Scholar 

  • Imperiale MJ, Casadevall A (2011) Bioterrorism: lessons learned since the anthrax mailings. MBio 2:e00232–e00211

    Google Scholar 

  • Jagtap P, Michailidis G, Zielke R, Walker AK, Patel N, Strahler JR, Driks A, Andrews PC, Maddock JR (2006) Early events of Bacillus anthracis germination identified by time-course quantitative proteomics. Proteomics 6:5199–5211

    CAS  Google Scholar 

  • Kempf MJ, Schubert WW, Beaudet RA (2008) Determination of lethality rate constants and D-values for Bacillus atrophaeus (ATCC 9372) spores exposed to dry heat from 115 degrees C to 170 degrees C. Astrobiology 8:1169–1182

    CAS  Google Scholar 

  • Kliem M, Sauer S (2012) The essence on mass spectrometry based microbial diagnostics. Curr Opin Microbiol 15:397–402

    CAS  Google Scholar 

  • Kuwana R, Kasahara Y, Fujibayashi M, Takamatsu H, Ogasawara N, Watabe K (2002) Proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology 148:3971–3982

    CAS  Google Scholar 

  • Lasch P, Beyer W, Nattermann H, Stammler M, Siegbrecht E, Grunow R, Naumann D (2009) Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks. Appl Environ Microbiol 75:7229–7242

    CAS  Google Scholar 

  • McKenney PT, Driks A, Eichenberger P (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11:33–44

    CAS  Google Scholar 

  • Plaire D, Puaud S, Marsolier-Kergoat MC, Elalouf JM (2017) Comparative analysis of the sensitivity of metagenomic sequencing and PCR to detect a biowarfare simulant (Bacillus atrophaeus) in soil samples. PLoS One 12:e0177112

    Google Scholar 

  • Pribil PA, Patton E, Black G, Doroshenko V, Fenselau C (2005) Rapid characterization of Bacillus spores targeting species-unique peptides produced with an atmospheric pressure matrix-assisted laser desorption/ionization source. J Mass Spectrom 40:464–474

    CAS  Google Scholar 

  • Raymond B, Federici BA (2017) In defense of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity—a response to EFSA. FEMS Microbiol Ecol 93

  • Rougemont B, Bontemps Gallo S, Ayciriex S, Carriere R, Hondermarck H, Lacroix JM, Le Blanc JC, Lemoine J (2017) Scout-MRM: multiplexed targeted mass spectrometry-based assay without retention time scheduling exemplified by Dickeya dadantii proteomic analysis during plant infection. Anal Chem 89:1421–1426

    CAS  Google Scholar 

  • Sauer S, Kliem M (2010) Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 8:74–82

    CAS  Google Scholar 

  • Schaeffer AB, Fulton MD (1933) A simplfied method of staining endospores. Science 77:194–194

    CAS  Google Scholar 

  • Setlow P (2007) I will survive: DNA protection in bacterial spores. Trends Microbiol 15:172–180

    CAS  Google Scholar 

  • Srivastava A, Pitesky ME, Steele PT, Tobias HJ, Fergenson DP, Horn JM, Russell SC, Czerwieniec GA, Lebrilla CB, Gard EE, Frank M (2005) Comprehensive assignment of mass spectral signatures from individual Bacillus atrophaeus spores in matrix-free laser desorption/ionization bioaerosol mass spectrometry. Anal Chem 77:3315–3323

    CAS  Google Scholar 

  • Stelder SK, Benito de Moya C, Hoefsloot HCJ, de Koning LJ, Brul S, de Koster CG (2018) Stoichiometry, absolute abundance, and localization of proteins in the Bacillus cereus spore coat insoluble fraction determined using a QconCAT approach. J Proteome Res 17:903–917

    CAS  Google Scholar 

  • Svedruzic D, Liu Y, Reinhardt LA, Wroclawska E, Cleland WW, Richards NG (2007) Investigating the roles of putative active site residues in the oxalate decarboxylase from Bacillus subtilis. Arch Biochem Biophys 464:36–47

    CAS  Google Scholar 

  • Swatkoski S, Russell SC, Edwards N, Fenselau C (2006) Rapid chemical digestion of small acid-soluble spore proteins for analysis of Bacillus spores. Anal Chem 78:181–188

    CAS  Google Scholar 

  • Tobias HJ, Pitesky ME, Fergenson DP, Steele PT, Horn J, Frank M, Gard EE (2006) Following the biochemical and morphological changes of Bacillus atrophaeus cells during the sporulation process using bioaerosol mass spectrometry. J Microbiol Methods 67:56–63

    CAS  Google Scholar 

  • Wang T, Wu J, Qi J, Hao L, Yi Y, Zhang Z (2016) Kinetics of inactivation of Bacillus subtilis subsp. niger spores and Staphylococcus albus on paper by chlorine dioxide gas in an enclosed space. Appl Environ Microbiol 82:3061–3069

    CAS  Google Scholar 

  • Zheng L, Abhyankar W, Ouwerling N, Dekker HL, van Veen H, van der Wel NN, Roseboom W, de Koning LJ, Brul S, de Koster CG (2016) Bacillus subtilis spore inner membrane proteome. J Proteome Res 15:585–594

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Jean-Charles Gaillard and Guylaine Miotello for invaluable technical help with the mass spectrometry platform.

Funding

This work was funded in part by the French joint ministerial program of R&D against CBRNE threats and the ANR program “Phylopeptidomics” (ANR-17-CE18-0023-01). CM was supported by DGA and CEA

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Armengaud.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mappa, C., Pible, O., Armengaud, J. et al. Assessing the ratio of Bacillus spores and vegetative cells by shotgun proteomics. Environ Sci Pollut Res 28, 25107–25115 (2021). https://doi.org/10.1007/s11356-018-3341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3341-z

Keywords

Navigation