Skip to main content

Advertisement

Log in

Adsorption and sequestration of cadmium ions by polyptychial mesoporous biochar derived from Bacillus sp. biomass

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bacteria-derived biochars from Bucillus sp. biomass under different pyrolysis temperature (250 °C, 350 °C, 450 °C, and 550 °C, respectively) were prepared, forming polyptychial, mesoporous graphite-like structure. The adsorption and sequestration efficiencies of Cd2+ by these biochars were evaluated, and the underlying mechanisms were then discussed. Cd2+ sorption data could be well described by Langmuir mode while the pseudo-second-order kinetic model and Elovich model best fitted the kinetic data. The functional groups complexation, cation-π interactions, and interaction with minerals (including surface precipitation with phosphorus and ion exchange) jointly contributed to Cd2+ sorption and sequestration on biochar, but the interaction with minerals played a dominant role by forming insoluble cadmium salt composed by polycrystalline and/or amorphous phosphate-bridged ternary complex. The maximum sorption capacity of BBC350 in simulated water phase of soil for Cd2+ was 34.6 mg/g. Furthermore, the addition of bacteria-derived biochars (1%, w/w) decreased the fractions easily absorbed by plants for Cd in the test paddy soils by 1.9–26% in a 10-day time. Results of this study suggest that bacteria-derived biochar would be a promising functional material in environmental and agricultural application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdul G, Zhu X, Chen B (2017) Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. Chem Eng J 319:9–20

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228

    Article  CAS  Google Scholar 

  • Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H (2017) Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550:380–383

    Article  CAS  Google Scholar 

  • Chen Z, Liu T, Tang J, Zheng Z, Wang H, Shao Q, Chen G, Li Z, Chen Y, Zhu J, Feng T (2018) Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures. Environ Sci Pollut Res 25:11854–11866

    Article  CAS  Google Scholar 

  • Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils 1. Soil Sci Soc Am J 44:265–268

    Article  CAS  Google Scholar 

  • Cui X, Fang S, Yao Y, Li T, Ni Q, Yang X, He Z (2016) Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci Total Environ 562:517–525

    Article  CAS  Google Scholar 

  • Deng Y, Huang S, Laird DA, Wang X, Meng Z (2019) Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems. Chemosphere 218:308–318

    Article  CAS  Google Scholar 

  • Gao LY, Deng JH, Huang GF, Li K, Cai KZ, Liu Y, Huang F (2019) Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge. Bioresour Technol 272:114–122

    Article  CAS  Google Scholar 

  • Guo Z, Zhang X, Kang Y, Zhang J (2017) Biomass-derived carbon sorbents for cd(II) removal: activation and adsorption mechanism. ACS Sustain Chem Eng 5:4103–4109

    Article  CAS  Google Scholar 

  • Harvey OR, Herbert BE, Rhue RD, Kuo LJ (2011) Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ Sci Technol 45:5550–5556

    Article  CAS  Google Scholar 

  • Jiang Y, Yan J, Wu X, Shan D, Zhou Q, Jiang L, Yang D, Fan Z (2016) Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors. J Power Sources 307:190–198

    Article  CAS  Google Scholar 

  • Klupfel L, Keiluweit M, Kleber M, Sander M (2014) Redox properties of plant biomass-derived black carbon (biochar). Environ Sci Technol 48:5601–5611

    Article  CAS  Google Scholar 

  • Lei S, Shi Y, Qiu Y, Che L, Xue C (2019) Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals. Sci Total Environ 646:1281–1289

    Article  CAS  Google Scholar 

  • Li F, Li D, Li X, Liao J, Li S, Yang J, Yang Y, Tang J, Liu N (2016) Microorganism-derived carbon microspheres for uranium removal from aqueous solution. Chem Eng J 284:630–639

    Article  CAS  Google Scholar 

  • Li F, Wang W, Li C, Zhu R, Ge F, Zheng Y, Tang Y (2018) Self-mediated pH changes in culture medium affecting biosorption and biomineralization of Cd2+ by Bacillus cereus Cd01. J Hazard Mater 358:178–186

    Article  CAS  Google Scholar 

  • Liang Y, Cao X, Zhao L, Xu X, Harris W (2014) Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property. J Environ Qual 43:1504–1509

    Article  CAS  Google Scholar 

  • Liu J, Liu W, Ji S, Wan Y, Yin H, Zhou Y (2014) Facile Synthesis of Carbon-Encapsulated Li4Ti5O12@C Hollow Microspheres as Superior Anode Materials for Li-Ion Batteries. Eur J Inorg Chem 12:2073–2079

  • Liu L, Fan S (2018) Removal of cadmium in aqueous solution using wheat straw biochar: effect of minerals and mechanism. Environ Sci Pollut Res 25:8688–8700

    Article  CAS  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018a) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  • Liu J, Zhu R, Liang X, Ma L, Lin X, Zhu J, He H, Parker SC, Molinari M (2018b) Synergistic adsorption of cd(II) with sulfate/phosphate on ferrihydrite: an in situ ATR-FTIR/2D-COS study. Chem Geol 477:12–21

    Article  CAS  Google Scholar 

  • Long C, Chen X, Jiang L, Zhi L, Fan Z (2015) Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12:141–151

    Article  CAS  Google Scholar 

  • Luo M, Lin H, Li B, Dong Y, He Y, Wang L (2018) A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresour Technol 259:312–318

    Article  CAS  Google Scholar 

  • Ma L, Zhu J, Xi Y, Zhu R, He H, Liang X, Ayoko GA (2015) Simultaneous adsorption of cd (II) and phosphate on Al 13 pillared montmorillonite. RSC Adv 5:77227–77234

    Article  CAS  Google Scholar 

  • Matias VRF, Beveridge TJ (2005) Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol 56:240–251

    Article  CAS  Google Scholar 

  • Mendonca FG, Cunha ITD, Soares RR, Tristao JC, Lago RM (2017) Tuning the surface properties of biochar by thermal treatment. Bioresour Technol 246:28–33

    Article  CAS  Google Scholar 

  • MEP (2016) The Ministry of Land and resources Report on the national soil contamination survey. http://www.gov.cn/foot/2014-2004/2017/content2661768.htm (in Chinese). Accessed 29 Sept 2016

  • O'Connor D, Peng T, Zhang J, Tsang DCW, Alessi DS, Shen Z, Bolan NS, Hou D (2018) Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ 619-620:815–826

    Article  CAS  Google Scholar 

  • Pal D, Maiti SK (2019) Abatement of cadmium (cd) contamination in sediment using tea waste biochar through meso-microcosm study. J Clean Prod 212:986–996

    Article  CAS  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    Article  CAS  Google Scholar 

  • Qiao JT, Liu TX, Wang XQ, Li FB, Lv YH, Cui JH, Zeng XD, Yuan YZ, Liu CP (2018) Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere 195:260–271

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem:544e551

  • Walker DJ, Clemente R, Roig A, Bernal MP (2003) The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environ Pollut 122:303–312

    Article  CAS  Google Scholar 

  • Wang RZ, Huang DL, Liu YG, Zhang C, Lai C, Zeng GM, Cheng M, Gong XM, Wan J, Luo H (2018) Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresour Technol 261:265–271

    Article  CAS  Google Scholar 

  • Xiao X, Chen B, Chen Z, Zhu L, Schnoor JL (2018) Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ Sci Technol 52:5027–5047

    Article  CAS  Google Scholar 

  • Xu X, Cao X, Zhao L, Wang H, Yu H, Gao B (2013) Removal of cu, Zn, and cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut Res 20:358–368

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yoo S, Chung CC, Kelley SS, Park S (2018) Graphitization behavior of loblolly pine wood investigated by in situ high temperature X-ray diffraction. ACS Sustain Chem Eng 6:9113–9119

    Article  CAS  Google Scholar 

  • Yu WS (2016) Agricultural and Agri-environment policy and sustainable agricultural development in China. IFRO report 247, University of Copenhagen, pp 6–15. https://www.researchgate.net/publication/301635451_Agricultural_and_agrienvironment_policy_and_sustainable_agricultural_development_in_China

  • Yu H, Zou W, Chen J, Chen H, Yu Z, Huang J, Tang H, Wei X, Gao B (2018) Biochar amendment improves crop production in problem soils: a review. J Environ Manag 232:8–21

    Article  CAS  Google Scholar 

  • Yuan J, Xu S, Zeng HY, Cao X, Dan Pan A, Xiao GF, Ding PX (2018) Hydrogen peroxide biosensor based on chitosan/2D layered double hydroxide composite for the determination of H2O2. Bioelectrochemistry 123:94–102

  • Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S (2015) Efficiency and mechanisms of cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manag 153:68–73

    Article  CAS  Google Scholar 

  • Zhao L, Cao X, Zheng W, Scott JW, Sharma BK, Chen X (2016) Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustain Chem Eng 4:1630–1636

    Article  CAS  Google Scholar 

  • Zhu R, Li M, Ge F, Xu Y, Zhu J, He H (2014) Co-sorption of cd and phosphate on the surface of a synthetic hydroxyiron-montmorillonite complex. Clay Clay Miner 62:79–88

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21577118 and 41701580), National Key Research and Development Plan of China (2016YFD0800700), China Postdoctoral Science Foundation Funded Project (2016M590749, 2017T100605, and 2018M642992), the Natural Science Foundation of Hunan Province (2016JJ1024), Key Research and Development Plan of Hunan Province (2018SK2045 and 2018SK2042) and Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization as well as Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (SER2017-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2897 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Tang, Y., Li, C. et al. Adsorption and sequestration of cadmium ions by polyptychial mesoporous biochar derived from Bacillus sp. biomass. Environ Sci Pollut Res 26, 23505–23523 (2019). https://doi.org/10.1007/s11356-019-05610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05610-3

Keywords

Navigation