Skip to main content

Advertisement

Log in

MEG spectral analysis in subtypes of mild cognitive impairment

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Mild cognitive impairment (MCI) has been described as an intermediate stage between normal aging and dementia. Previous studies characterized the alterations of brain oscillatory activity at this stage, but little is known about the differences between single and multidomain amnestic MCI patients. In order to study the patterns of oscillatory magnetic activity in amnestic MCI subtypes, a total of 105 subjects underwent an eyes-closed resting-state magnetoencephalographic recording: 36 healthy controls, 33 amnestic single domain MCIs (a-sd-MCI), and 36 amnestic multidomain MCIs (a-md-MCI). Relative power values were calculated and compared among groups. Subsequently, relative power values were correlated with neuropsychological tests scores and hippocampal volumes. Both MCI groups showed an increase in relative power in lower frequency bands (delta and theta frequency ranges) and a decrease in power values in higher frequency bands (alpha and beta frequency ranges), as compared with the control group. More importantly, clear differences emerged from the comparison between the two amnestic MCI subtypes. The a-md-MCI group showed a significant power increase within delta and theta ranges and reduced relative power within alpha and beta ranges. Such pattern correlated with the neuropsychological performance, indicating that the a-md-MCI subtype is associated not only with a “slowing” of the spectrum but also with a poorer cognitive status. These results suggest that a-md-MCI patients are characterized by a brain activity profile that is closer to that observed in Alzheimer disease. Therefore, it might be hypothesized that the likelihood of conversion to dementia would be higher within this subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrell B, Dehlin O (1998) The clock-drawing test. Age Ageing 27:399–403

    Article  Google Scholar 

  • Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:270–279

    Article  PubMed Central  PubMed  Google Scholar 

  • Auer S, Reisberg B (1997) The GDS/FAST staging system. Int Psychogeriatry 9(1):167–171

    Article  Google Scholar 

  • Babiloni C, Binetti G, Cassetta E, Cerboneschi D, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Lanuzza B, Miniussi C, Moretti DV, Nobili F, Pascual-Marqui RD, Rodriguez G, Romani GL, Salinari S, Tecchio F, Vitali P, Zanetti O, Zappasodi F, Rossini PM (2004) Mapping distributed sources of cortical rhythms in mild Alzheimer's disease. A multicentric EEG study. Neuroimage 22(1):57–67

    Article  PubMed  Google Scholar 

  • Babiloni C, Benussi L, Binetti G, Cassetta E, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Ghidoni R, Miniussi C, Rodriguez G, Romani GL, Squitti R, Ventriglia MC, Rossini PM (2006a) Apolipoprotein E and alpha brain rhythms in mild cognitive impairment: a multicentric electroencephalogram study. Ann Neurol 59:323–334

    Article  CAS  PubMed  Google Scholar 

  • Babiloni C, Binetti G, Cassetta E, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Hirata K, Lanuzza B, Miniussi C, Moretti DV, Nobili F, Rodriguez G, Romani GL, Salinari S, Rossini PM (2006b) Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study. Clin Neurophysiol 117:252–268

    Article  PubMed  Google Scholar 

  • Babiloni C, Frisoni G, Steriade M, Bresciani L, Binetti G, Del Percio C, Geroldi C, Miniussi C, Nobili F, Rodriguez G, Zappasodi F, Carfagna T, Rossini PM (2006c) Frontal white matter volume and delta EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer's disease. Clin Neurophysiol 117(5):1113–1129

    Article  PubMed  Google Scholar 

  • Babiloni C, Frisoni GB, Pievani M, Vecchio F, Lizio R, Buttiglione M, Geroldi C, Fracassi C, Eusebi F, Ferri R, Rossini PM (2009) Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage 44:123–135

    Article  PubMed  Google Scholar 

  • Babiloni C, Visser PJ, Frisoni G, De Deyn PP, Bresciani L, Jelic V, Nagels G, Rodriguez G, Rossini PM, Vecchio F, Colombo D, Verhey F, Wahlund LO, Nobili F (2010) Cortical sources of resting EEG rhythms in mild cognitive impairment and subjective memory complaint. Neurobiol Agin 31:1787–1798

    Article  Google Scholar 

  • Bajo R, Maestú F, Nevado A, Sancho M, Gutiérrez R, Campo P, Castellanos NP, Gil P, Moratti S, Pereda E, Del-Pozo F (2010) Functional connectivity in mild cognitive impairment during a memory task: implications for the disconnection hypothesis. J Alzheimers Dis 22(1):183–193

    PubMed  Google Scholar 

  • Bennett DA, Schneider JA, Bienias JL, Evans DA, Wilson RS (2005) Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology 64:834–841

    Article  CAS  PubMed  Google Scholar 

  • Benton AL, Hamsher K (1989) Multilingual aplasia examination, 2nd edn. Department of Neurology and Psychology, The University of Iowa, Iowa City

  • Berendse HW, Verbunt JP, Scheltens P, van Dijk BW, Jonkman EJ (2000) Magnetoencephalographic analysis of cortical activity in Alzheimer's disease: a pilot study. Clin Neurophysiol 111:604–612

    Article  CAS  PubMed  Google Scholar 

  • Brodaty H, Heffernan M, Kochan NA, Draper B, Trollor JN, Reppermund S, Slavin MJ, Sachdev PS (2012) Mild cognitive impairment in a community sample: The Sydney Memory and Ageing Study. Alzheimers Dement 9(3):310–317

    Article  PubMed  Google Scholar 

  • Caffarra P, Ghetti C, Concari L, Venneri A (2008) Differential patterns of hypoperfusion in subtypes of mild cognitive impairment. Open Neuroimag J 2:20–28

    Article  PubMed Central  PubMed  Google Scholar 

  • Dauwels J, Srinivasan K, Ramasubba Reddy M, Musha, T, Vialatte FB, Latchoumane C, Jeong J, Cichocki A (2011) Slowing and loss of complexity in Alzheimer's EEG: two sides of the same coin? Int J Alzheimers Dis 539621

  • Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, Bertram L, Mullin K, Tanzi RE, Blacker D, Albert MS, Sperling RA (2005) Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65:404–411

    Article  CAS  PubMed  Google Scholar 

  • Diniz BS, Nunes PV, Yassuda MS, Forlenza OV (2009) Diagnosis of mild cognitive impairment revisited after one year. Preliminary results of a prospective study. Dement Geriatr Cogn Disord 27(3):224–231

    Article  PubMed  Google Scholar 

  • Dubois B, Feldman HH, Jacova C, Cummings JL, De Kosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha G, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, de Souza LC, Stern J, Visser PJ, Scheltens P (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127

    Article  PubMed  Google Scholar 

  • Ernst MD (2004) Permutation methods: a basis for exact inference. Stat Sci 19(4):676–685

    Article  Google Scholar 

  • Farias ST, Mungas D, Jagust W (2005) Degree of discrepancy between self and other-reported everyday functioning by cognitive status: dementia, mild cognitive impairment, and healthy elders. Int J Geriatr Psychiatry 20:827–834

    Article  PubMed Central  PubMed  Google Scholar 

  • Fernandez A, Maestu F, Amo C, Gil P, Fehr T, Wienbruch C, Rockstroh B, Elbert T, Ortiz T (2002) Focal temporoparietal slow activity in Alzheimer's disease revealed by magnetoencephalography. Biol Psychiatry 52:764–770

    Article  PubMed  Google Scholar 

  • Fernandez A, Arrazola J, Maestu F, Amo C, Gil-Gregorio P, Wienbruch C, Ortiz T (2003) Correlations of hippocampal atrophy and focal low-frequency magnetic activity in Alzheimer disease: volumetric MR imaging-magnetoencephalographic study. AJNR Am J Neuroradiol 24:481–487

    PubMed  Google Scholar 

  • Fernandez A, Hornero R, Mayo A, Poza J, Maestu F, Ortiz T (2006a) Quantitative electroencephalography of spontaneous brain activity in Alzheimer disease: an exhaustive frequency analysis. Alzheimer Dis Assoc Disord 20:153–159

    Article  PubMed  Google Scholar 

  • Fernandez A, Hornero R, Mayo A, Poza J, Gil-Gregorio P, Ortiz T (2006b) MEG spectral profile in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol 117:306–314

    Article  PubMed  Google Scholar 

  • Fernandez A, Turrero A, Zuluaga P, Gil P, Maestu F, Campo P, Ortiz T (2006c) Magnetoencephalographic parietal delta dipole density in mild cognitive impairment: preliminary results of a method to estimate the risk of developing Alzheimer disease. Arch Neurol 63:427–430

    Article  PubMed  Google Scholar 

  • Fernandez A, Turrero A, Zuluaga P, Gil-Gregorio P, del Pozo F, Maestu F, Moratti S (2013) MEG delta mapping along the healthy aging-Alzheimer’s disease continuum: diagnostic implications. J Alzh Dis 35(3):495–507

    CAS  Google Scholar 

  • Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  CAS  PubMed  Google Scholar 

  • Fouquet M, Desgranges B, Landeau B, Duchesnay E, Mezenge F, de la Sayette V, Viader F, Baron JC, Eustache F, Chetelat G (2009) Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain 132:2058–2067

    Article  PubMed Central  PubMed  Google Scholar 

  • Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B (2006) Mild cognitive impairment. Lancet 367:1262–1270

    Article  PubMed  Google Scholar 

  • Grundman M, Petersen RC, Ferris S, Thomas RG, Aisen PS, Bennett DA, Foster NL, Jack CR Jr, Galasko DR, Doody R, Kaye J, Sano M, Mohs R, Gauthier S, Kim HT, Jin S, Schultz AN, Schafer K, Mulnard R, van Dyck CH, Mintzer J, Zamrini EY, Cahn-Weiner D, Thal LJ (2004) Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 61:59–66

    Article  PubMed  Google Scholar 

  • Grunwald M, Busse F, Hensel A, Riedel-Heller S, Kruggel F, Arendt T, Wolf H, Gertz HJ (2002) Theta-power differences in patients with mild cognitive impairment under rest condition and during haptic tasks. Alzheimer Dis Assoc Disord 16:40–48

    Article  PubMed  Google Scholar 

  • Haense C, Kalbe E, Herholz K, Hohmann C, Neumaier B, Krais R, Heiss WD (2012) Cholinergic system function and cognition in mild cognitive impairment. Neurobiol Aging 33:867–877

    Article  CAS  PubMed  Google Scholar 

  • Han JW, Kim TH, Lee SB, Park JH, Lee JJ, Huh Y, Park JE, Jhoo JH, Lee DY, Kim KW (2012) Predictive validity and diagnostic stability of mild cognitive impairment subtypes. Alzheimers Dement 8:553–559

    Article  PubMed  Google Scholar 

  • He J, Farias S, Martinez O, Reed B, Mungas D, Decarli C (2009) Differences in brain volume, hippocampal volume, cerebrovascular risk factors, and apolipoprotein E4 among mild cognitive impairment subtypes. Arch Neurol 66(11):1393–1399

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang C, Wahlund L, Dierks T, Julin P, Winblad B, Jelic V (2000) Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clin Neurophysiol 111:1961–1967

    Google Scholar 

  • Jack CR Jr, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52:1397–1403

    Article  PubMed Central  PubMed  Google Scholar 

  • Jelic V, Shigeta M, Julin P, Almkvist O, Winblad B, Wahlund LO (1996) Quantitative electroencephalography power and coherence in Alzheimer's disease and mild cognitive impairment. Dementia 7:314–323

    CAS  PubMed  Google Scholar 

  • Jelic V, Johansson SE, Almkvist O, Shigeta M, Julin P, Nordberg A, Winblad B, Wahlund LO (2000) Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer's disease. Neurobiol Aging 21:533–540

    Article  CAS  PubMed  Google Scholar 

  • Jelic V, Kivipelto M, Winblad B (2005) Clinical trials in mild cognitive impairment: lessons for the future. J Neurol Neurosurg Psychiatry 77(4):429–438

    Article  PubMed Central  PubMed  Google Scholar 

  • Jeong J (2004) EEG dynamics in patients with Alzheimer's disease. Clin Neurophysiol 115:1490–1505

    Article  PubMed  Google Scholar 

  • Kaplan E, Goodglass H, Weintraub S (1983) The Boston Naming Test Philadelphia: Lea and Febiger

  • Larrieu S, Letenneur L, Orgogozo JM, Fabrigoule C, Amieva H, Le Carret N, Barberger-Gateau P, Dartigues JF (2002) Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 59:1594–1599

    Article  CAS  PubMed  Google Scholar 

  • Lavenex P, Amaral DG (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10:420–430

    Article  CAS  PubMed  Google Scholar 

  • Lawton MP, Brodie EM (1969) Assessment of older people: self maintaining and instrumental activity of daily living. J Gerontol 9:179–186

    Article  CAS  Google Scholar 

  • Lobo A, Ezquerra J, Gomez BF, Sala JM, Seva DA (1979) Cognitive mini-test (a simple practical test to detect intellectual changes in medical patients). Actas Luso Esp Neurol Psiquiatr Cienc Afines 7:189–202

    CAS  PubMed  Google Scholar 

  • Maestú F, Campo P, Del Río D, Moratti S, Gil-Gregorio P, Fernández A, Capilla A, Ortiz T (2008) Increased biomagnetic activity in the ventral pathway in mild cognitive impairment. Clin Neurophysiol 119(6):1320–1327

    Article  PubMed  Google Scholar 

  • Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164:177–190

    Article  PubMed  Google Scholar 

  • Martin SB, Smith CD, Collins HR, Schmitt FA, Gold BT (2010) Evidence that volume of anterior medial temporal lobe is reduced in seniors destined for mild cognitive impairment. Neurobiol Aging 31:1099–1106

    Article  PubMed Central  PubMed  Google Scholar 

  • McKhan G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944

    Article  Google Scholar 

  • Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405

    CAS  PubMed  Google Scholar 

  • Mufson JC, Chen EY, Cochran EJ, Beckett LA, Bennett DA, Kordower JH (1999) Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment. Exp Neuro 158:469–490

    Article  CAS  Google Scholar 

  • Nestor PJ, Scheltens P, Hodges JR (2004) Advances in the early detection of Alzheimer's disease. Nat Med 10(Suppl):S34–S41

    Article  PubMed  Google Scholar 

  • Nichols TE, Holmes AP (2001) Nonparametric permutation tests for human neuroimaging: a primer with examples. Hum Brain Mapping 15:1–25

    Article  Google Scholar 

  • Nordlund A, Rolstad S, Klang O, Edman A, Hansen S, Wallin A (2010) Two-year outcome of MCI subtypes and aetiologies in the Goteborg MCI study. J Neurol Neurosurg Psychiatry 81:541–546

    Article  PubMed  Google Scholar 

  • Norris G, Tate RL (2000) The behavioural assessment of the dysexecutive syndrome (BADS): ecological, concurrent and construct validity. Neuropsychological Rehabilitation 10:33–45

    Article  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen J‐M (2011) FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. doi:10.1155/2011/156869

  • Osipova D, Ahveninen J, Jensen O, Ylikoski A, Pekkonen E (2005) Altered generation of spontaneous oscillations in Alzheimer's disease. Neuroimage 27:835–841

    Article  PubMed  Google Scholar 

  • Osipova D, Rantanen K, Ahveninen J, Ylikoski R, Häppölä O, Strandberg T, Pekkonen E (2006) Source estimation of spontaneous MEG oscillations in mild cognitive impairment. Neurosci Lett 405(1–2):57–61

    Article  CAS  PubMed  Google Scholar 

  • Peña-Casanova J (1990) Programa Integrado de Exploración Neuropsicológica- Test Barcelona Protocolo Masson, SA, Barcelona

  • Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    Article  CAS  PubMed  Google Scholar 

  • Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    Article  CAS  PubMed  Google Scholar 

  • Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194

    Article  CAS  PubMed  Google Scholar 

  • Petersen RC (2005) Mild cognitive impairment: where are we? Alzheimer Dis Assoc Disord 19:166–169

    Article  PubMed  Google Scholar 

  • Pfeffer RI, Kurosaki TT, Harrah CH Jr, Chance JM, Filos S (1982) Measurement of functional activities in older adults in the community. J Gerontol 37:323–329

    Article  CAS  PubMed  Google Scholar 

  • Prichep LS, John ER, Ferris SH, Reisberg B, Almas M, Alper K, Cancro R (1994) Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiol Aging 15:85–90

    Article  CAS  PubMed  Google Scholar 

  • Prichep LS, John ER, Ferris SH, Rausch L, Fang Z, Cancro R, Torossian C, Reisberg B (2006) Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiol Aging 27:471–481

    Article  CAS  PubMed  Google Scholar 

  • Reisberg B, Ferris SH, de León MJ, Crook T (1982) The global deterioration scale for assessment of primary degenerative dementia. Am J Psychiatr 139:1136–1139

    CAS  PubMed  Google Scholar 

  • Reitan RM (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8:271–276

    Article  Google Scholar 

  • Rodriguez G, Copello F, Vitali P, Perego G, Nobili F (1999) EEG spectral profile to stage Alzheimer's disease. Clin Neurophysiol 110:1831–1837

    Article  CAS  PubMed  Google Scholar 

  • Rosen WG, Terry RD, Fuld PA, Katzman R, Peck A (1980) Pathological verification of ischemic score in differentiation of dementias. Ann Neurol 7:486–488

    Article  CAS  PubMed  Google Scholar 

  • Rossini PM, Buscema M, Capriotti M, Grossi E, Rodriguez G, Del Percio C, Babiloni C (2008) Is it possible to automatically distinguish resting EEG data of normal elderly vs mild cognitive impairment subjects with high degree of accuracy? Clin Neurophysiol 119:1534–1545

    Article  PubMed  Google Scholar 

  • Shah Y, Tangalos EG, Petersen RC (2000) Mild cognitive impairment. When is it a precursor to Alzheimer's disease? Geriatrics 55(9):62, 65–8

    Google Scholar 

  • Tabert MH, Manly JJ, Liu X, Pelton GH, Rosenblum S, Jacobs M, Zamora D, Goodkind M, Bell K, Stern Y, Devanand DP (2006) Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Arch Gen Psychiatry 63:916–924

    Article  PubMed  Google Scholar 

  • Taulu S, Kajola M (2005) Presentation of electromagnetic multichannel data: the signal space separation method. J Appl Phys 97:124905

    Article  Google Scholar 

  • van der Hiele K, Vein AA, Reijntjes RH, Westendorp RG, Bollen EL, van Buchem MA, van Dijk JG, Middelkoop HA (2007) EEG correlates in the spectrum of cognitive decline. Clin Neurophysiol 118:1931–1939

    Article  PubMed  Google Scholar 

  • van Deursen JA, Vuurman EF, Verhey FR, van Kranen-Mastenbroek VH, Riedel WJ (2008) Increased EEG gamma band activity in Alzheimer's disease and mild cognitive impairment. J Neural Transm 115:1301–1311

    Article  PubMed Central  PubMed  Google Scholar 

  • Warrington EK, James M (1991) The visual object and space perception battery bury St Edmunds. Thames Valley Test Company, UK

    Google Scholar 

  • Wechsler D (1987) Wechsler Memory Scale—revised (manual). The Psychological Corporation, San Antonio

    Google Scholar 

  • Whitwell JL, Petersen RC, Negash S, Weigand SD, Kantarci K, Ivnik RJ, Knopman DS, Boeve BF, Smith GE, Jack CR Jr (2007) Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Arch Neurol 64(8):1130–1138

    Article  PubMed Central  PubMed  Google Scholar 

  • Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment-beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256:240–246

    Article  CAS  PubMed  Google Scholar 

  • Wolk DA, Price JC, Saxton JA, Snitz BE, James JA, Lopez OL, Aizenstein HJ, Cohen AD, Weissfeld LA, Mathis CA, Klunk WE, De-Kosky ST (2009) Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol 65:557–568

    Article  PubMed Central  PubMed  Google Scholar 

  • Yesavage JA, Brink TL, Lum O, Huang V, Adey M, Leirer VO (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17:37–49

    Article  PubMed  Google Scholar 

  • Zhang H, Sachdev PS, Wen W, Kochan NA, Crawford JD, Brodaty H, Slavin MJ, Reppermund S, Draper B, Zhu W, Kang K, Trollor JN (2012) Gray matter atrophy patterns of mild cognitive impairment subtypes. J Neurol Sci 315:26–32

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by two projects, PSI2009-14415-C03-01 and PSI2012-38375-C03-01, from the Spanish Ministry of Science and Economy, and a predoctoral fellowship from the Ministry of Education (FPU AP-2008- 00175), a predoctoral fellowship from the Spanish Ministry of Science and Innovation (BES-2010-036469), a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM), and a predoctoral fellow from the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. López.

Additional information

M. E. López and P. Cuesta contributed equally to this work.

About this article

Cite this article

López, M.E., Cuesta, P., Garcés, P. et al. MEG spectral analysis in subtypes of mild cognitive impairment. AGE 36, 1095–1112 (2014). https://doi.org/10.1007/s11357-014-9624-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-014-9624-5

Keywords

Navigation