Skip to main content
Log in

The nonlinear distribution of employment across municipalities

  • Regular Article
  • Published:
Journal of Economic Interaction and Coordination Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear distribution of employment across Spanish municipalities is analyzed. Also, we explore new properties of the family of generalized power law (GPL) distributions and explore its hierarchical structure, then we test its adequacy for modeling employment data. A new subfamily of heavy-tailed GPL distributions that is right tail equivalent to a Pareto (power-law) model is derived. Our findings show on the one hand that the distribution of employment across Spanish municipalities follows a power-law behavior in the upper tail and, on the other hand, the adequacy of GPL models for modeling employment data in the whole range of the distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aitchison J, Brown JAC (1957) The lognormal distribution with special reference to its uses in economics. Cambridge University Press, London

    Google Scholar 

  • Arnold BC (2008) Pareto and generalized Pareto distributions. Modeling income distributions and Lorenz curves. Springer, New York, pp 119–145

    Google Scholar 

  • Arnold BC (2014) Univariate and multivariate Pareto models. J Stat Distrib Appl 1(1):1–16

    Google Scholar 

  • Arnold BC (2015) Pareto distributions, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Axtell RL (2001) Zipf distribution of US firm sizes. Science 293(5536):1818–1820

    Google Scholar 

  • Axtell R (2018) Endogenous firm dynamics and labor flows via heterogeneous agents. In: Handbook of computational economics, vol 4. Elsevier, pp 157–213

  • Byrd RH, Lu P, Nocedal J, Zhu CY (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16(5):1190–1208

    Google Scholar 

  • Bowley AL (1920) Elements of statistics. Charles Scribner’s Sons, New York

    Google Scholar 

  • Castillo E, Galambos J, Sarabia JM (1989) The selection of the domain of attraction of an extreme value distribution from a set of data. Extreme value theory. Springer, New York, pp 181–190

    Google Scholar 

  • Castillo E, Hadi AS, Balakrishnan N, Sarabia JM (2005) Extreme value and related models with applications in engineering and science. Wiley, Hoboken

    Google Scholar 

  • Champernowne DG (1953) A model of income distribution. Econ J 63(250):318–351

    Google Scholar 

  • Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703

    Google Scholar 

  • Dagum C (1975) A model of income distribution and the conditions of existence of moments of finite order. In: Proceedings of the 40th session of the international statistical institute, vol 46, pp 199–205

  • Desmet K, Fafchamps M (2005) Changes in the spatial concentration of employment across US counties: a sectoral analysis 1972–2000. J Econ Geogr 5(3):261–284

    Google Scholar 

  • Eeckhout J (2004) Gibrat’s law for (all) cities. Am Econ Rev 94(5):1429–1451

    Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Google Scholar 

  • Fisk PR (1961) The graduation of income distributions. Econometrica 29(2):171–185

    Google Scholar 

  • Fujiwara Y, Guilmi CD, Aoyama H, Gallegati M, Souma W (2004) Do Pareto–Zipf and Gibrat laws hold true? An analysis with European firms. Physica A 335(1–2):197–216

    Google Scholar 

  • Gabaix X (2016) Power laws in economics: an introduction. J Econ Perspect 30(1):185–206

    Google Scholar 

  • Gibrat R (1931) Les Inégalités Économiques. Sirey, Paris

    Google Scholar 

  • Guillen M, Prieto F, Sarabia JM (2011) Modelling losses and locating the tail with the Pareto Positive Stable distribution. Insur Math Econ 49(3):454–461

    Google Scholar 

  • Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3(5):1163–1174

    Google Scholar 

  • Ioannides YM, Overman HG (2003) Zipf’s law for cities: an empirical examination. Reg Sci Urban Econ 33(2):127–137

    Google Scholar 

  • Kendall M, Stuart A (1983) The advanced theory of statistics, vol 3. Griffin, New York, pp 410–414

    Google Scholar 

  • Kesten H (1973) Random difference equations and renewal theory for products of random matrices. Acta Math 131:207–248

    Google Scholar 

  • Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences, vol 470. Wiley, New York

    Google Scholar 

  • Kleijnen JP (1995) Verification and validation of simulation models. Eur J Oper Res 82(1):145–162

    Google Scholar 

  • Korpi M (2007) Does size of local labour markets affect wage inequality? A rank-size rule of income distribution. J Econ Geogr 8(2):211–237

    Google Scholar 

  • Kotz S, Balakrishnan N, Johnson NL (2004) Continuous multivariate distributions, models and applications. Wiley, New York

    Google Scholar 

  • Lomax KS (1954) Business failures; another example of the analysis of failure data. J Am Stat Assoc 49(268):847–852

    Google Scholar 

  • Lux T, Zwinkels RC (2018) Empirical validation of agent-based models. In: Handbook of computational economics, vol 4. Elsevier, pp 437–488

  • Lyócsa S, Výrost T (2018) Scale-free distribution of firm-size distribution in emerging economies. Physica A 508:501–505

    Google Scholar 

  • Mason DM, Schuenemeyer JH (1983) A modified Kolmogorov–Smirnov test sensitive to tail alternatives. Ann Stat 11(3):933–946

    Google Scholar 

  • Matano A, Naticchioni P (2011) Wage distribution and the spatial sorting of workers. J Econ Geogr 12(2):379–408

    Google Scholar 

  • Moors JJA (1988) A quantile alternative for kurtosis. J R Stat Soc Ser D (The Statistician) 37(1):25–32

    Google Scholar 

  • Nash JC, Varadhan R (2011) Unifying optimization algorithms to aid software system users: optimx for R. J Stat Softw 43(9):1–14

    Google Scholar 

  • Pinto CM, Lopes AM, Machado JT (2012) A review of power laws in real life phenomena. Commun Nonlinear Sci Numer Simul 17(9):3558–3578

    Google Scholar 

  • Prieto F, Sarabia JM (2017) A generalization of the power law distribution with nonlinear exponent. Commun Nonlinear Sci Numer Simul 42:215–228

    Google Scholar 

  • Rampellini K, Veenendaal B (2016) Analysing the spatial distribution of changing labour force dynamics in the Pilbara. Labour force mobility in the Australian resources industry. Springer, Singapore, pp 29–58

  • Resnick SI (2013) Extreme values, regular variation and point processes. Springer, New York

    Google Scholar 

  • Sarabia JM, Prieto F (2009) The Pareto-positive stable distribution: a new descriptive model for city size data. Physica A 388(19):4179–4191

    Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Google Scholar 

  • Spanish Social Security system (2018) http://www.seg-social.es/wps/portal/wss/internet/EstadisticasPresupuestosEstudios/Estadisticas. Accessed July 2018

  • Seneta E (2006) Regularly varying functions, vol 508. Springer, New York

    Google Scholar 

  • Simon HA (1955) On a class of skew distribution functions. Biometrika 44(3/4):425–440

    Google Scholar 

  • Wójcik D, MacDonald-Korth D (2015) The British and the German financial sectors in the wake of the crisis: size, structure and spatial concentration. J Econ Geogr 15(5):1033–1054

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the constructive suggestions provided by the reviewers, which improved the paper. The authors thankfully acknowledges the computer resources, technical expertise and assistance provided by the Advanced Computing and e-Science Team at IFCA. Faustino Prieto also acknowledges the Faculty of Business and Economics and the Centre for Actuarial Studies at the University of Melbourne for their special support, since part of this paper was written while Faustino Prieto was visiting The University of Melbourne during the period July-September 2018.

Funding

Faustino Prieto acknowledges funding by the José Castillejo Program (Grant number CAS17/00461, Ministerio de Educación, Cultura y Deporte, Programa Estatal de Promoción de Talento y su Empleabilidad en I+D+i, Subprograma Estatal de Movilidad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016). José María Sarabia thanks to Ministerio de Economía y Competitividad, project ECO2016-76203-C2-1-P, for partial support of this work. Research partially carried out while Calderin-Ojeda visited University of Cantabria as part of his Special Study Program leave (University of Melbourne).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faustino Prieto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

Note that any function g, with \(\displaystyle \lim \nolimits _{z \rightarrow \infty }g(z;\varvec{\theta })=\alpha >0\), is slowly varying at infinity: \(\displaystyle \lim _{z \rightarrow \infty }g(tz;\varvec{\theta })/g(z;\varvec{\theta })=1, \forall t>0\); then, we can check that \(\displaystyle \lim _{z \rightarrow \infty }\frac{S_Z(tz;\varvec{\theta })}{S_Z(z;\varvec{\theta })}=\displaystyle \lim \nolimits _{z \rightarrow \infty }\frac{(1+tz)^{-g(tz;\varvec{\theta })}}{(1+z)^{-g(z;\varvec{\theta })}}=t^{-\alpha }, \forall t>0\), where \(S_Z(z;\varvec{\theta })\) is the survival function of the corresponding GPL distribution. \(\square \)

Proof of Remark 1

We can check that (a) \(\displaystyle \lim \nolimits _{z \rightarrow \infty }\frac{S_Z(z;\varvec{\theta })}{G_Z(z)}= \displaystyle \lim \nolimits _{z \rightarrow \infty }\frac{(1+z)^{-g(z;\varvec{\theta })}}{(1+z)^{-\alpha }}=1\), where \(G_Z(z)\) is (in this case) the survival function of the Pareto type II distribution;

(b) \(\displaystyle \lim _{z \rightarrow \infty }\frac{S_Z(z;\varvec{\theta })}{G_Z(z)}= \displaystyle \lim _{z \rightarrow \infty }\frac{(1+z)^{-g(z;\varvec{\theta })}}{e^{-\lambda z}}=\infty \), where \(G_Z(z)\) is (in this case) the survival function of the exponential distribution.

Log-likelihood function, GPL(II) model (Eq. 5) with left-censored data:

$$\begin{aligned} \log \ell (\alpha ,\beta ,\sigma )= & {} \log \left[ [1-S_X(x_0)]^r\prod _{\begin{array}{c} i=r+1 \end{array}}^{N} f(x_i)\right] \\= & {} (N-r)[\log (\alpha )-\log (\sigma )]-\sum _{\begin{array}{c} i=r+1 \end{array}}^{N}\log \left( 1+x_i/\sigma \right) \\+ & {} \sum _{\begin{array}{c} i=r+1 \end{array}}^{N}\log \left[ \beta +1+\log \left( 1+x_i/\sigma \right) \right] +\beta \sum _{\begin{array}{c} i=r+1 \end{array}}^{N}\log \left[ \log \left( 1+x_i/\sigma \right) \right] \\- & {} (\beta +1)\sum _{\begin{array}{c} i=r+1 \end{array}}^{N}\log \left[ 1+\log \left( 1+x_i/\sigma \right) \right] -\alpha \sum _{\begin{array}{c} i=r+1 \end{array}}^{N} \displaystyle \frac{[\log \left( 1+x_i/\sigma \right) ]^{\beta +1}}{[1+\log \left( 1+x_i/\sigma \right) ]^\beta }\\+ & {} r\log \left[ 1-\exp {\left[ -\alpha \displaystyle \frac{[\log \left( 1+x_0/\sigma \right) ]^{\beta +1}}{[1+\log (1+x_0/\sigma )]^\beta }\right] } \right] , \end{aligned}$$

where N is the sample size (included the left censored observations), r is the number of left censored observations, \(x_0=4\) is the censoring value, and the maximum likelihood estimates of the unknown parameter vector (\(\alpha \),\(\beta \),\(\sigma \)) is the one that maximizes the log-likelihood function \(\log \ell (\alpha ,\beta ,\sigma )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, F., Sarabia, J.M. & Calderín-Ojeda, E. The nonlinear distribution of employment across municipalities. J Econ Interact Coord 16, 287–307 (2021). https://doi.org/10.1007/s11403-020-00294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11403-020-00294-2

Keywords

JEL Classification

Navigation