Skip to main content
Log in

Picrotoxane sesquiterpene and α-pyrone derivative from Dendrobium signatum and their free radical scavenging potency

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

One new picrotoxane sesquiterpene (1) and one new α-pyrone derivative (4), together with nine known compounds, were isolated from the aerial parts of Dendrobium signatum. The structures of the new compounds were elucidated based on the interpretation of 1D and 2D NMR, HRESIMS and electronic circular dichroism (ECD) data. The absolute configuration of 1 was confirmed by single-crystal X-ray diffraction data. The new α-pyrone 4 exhibited promising ABTS scavenging activity with IC50 value of 0.7 μM.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lopo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118–126

    Article  Google Scholar 

  2. Young OI, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186

    Article  CAS  Google Scholar 

  3. Cameron KM, Chase MW, Whitten WM, Kores PJ, Jarrell DC, Albert VA, Yukawa T, Hills HG, Goldman DH (1999) A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide. Am J Bot 86(2):208–224

    Article  Google Scholar 

  4. Wang L, Zhang CF, Wang ZT, Zhang M, Xu LS (2009) Five new compounds from Dendrobium crystallinum. J Asian Nat Prod Res 11(11):903–911

    Article  CAS  Google Scholar 

  5. Zhang GN, Zhong LY, Bligh SWA, Guo YL, Zhang CF, Zhang M, Wang ZT, Xu LS (2005) Bi-bicyclic and bi-tricyclic compounds from Dendrobium thyrsiflorum. Phytochemistry 66(10):1113–1120

    Article  CAS  Google Scholar 

  6. Chanvorachote P, Kowitdamrong A, Ruanghirun T, Sritularak B, Mungmee C, Likhitwitayawuid K (2013) Cytotoxic and antimigratory activities of phenolic compounds from Dendrobium brymerianum. Nat Prod Commun 8(1):115–118

    CAS  PubMed  Google Scholar 

  7. Liu XF, Zhu J, Ge SY, Xia LJ, Yang HY, Qian YT, Ren FZ (2011) Orally administered Dendrobium officinale and its polysaccharides enhance immune functions in BALB/c mice. Nat Prod Commun 6(6):867–870

    CAS  PubMed  Google Scholar 

  8. Vaddhanaphuti N (2005) A field guide to the wild orchids of Thailand fourth and, expanded. Silkworm books, Chiang mai

    Google Scholar 

  9. Mittraphab A, Muangnoi C, Likhitwitayawuid K, Rojsitthisak P, Sritularak B (2016) A new bibenzyl-phenanthrene derivative from Dendrobium signatum and its cytotoxic activity. Nat Prod Commun 11(5):657–659

    PubMed  Google Scholar 

  10. Okamoto T, Natsume M, Onaka T, Uchimaru F, Shimizu M (1966) The structure of dendroxine the third alkaloid from Dendrobium nobile. Chem Pharm Bull 14(6):672–675

    Article  CAS  Google Scholar 

  11. Li Y, Wang CL, Guo SX, Yang JS, Xiao PG (2008) Two new compounds from Dendrobium candidum. Chem Pharm Bull 56(10):1477–1479

    Article  CAS  Google Scholar 

  12. Li Y, Wang CL, Wang YJ, Wang FF, Guo SX, Yang JS, Xiao PG (2009) Four new bibenzyl derivatives from Dendrobium candidum. Chem Pharm Bull 57(9):997–999

    Article  CAS  Google Scholar 

  13. Yang D, Cheng ZQ, Yang L, Hou B, Yang J, Li XN, Zi CT, Dong FW, Liu ZH, Zhou J, Ding ZT, Hu JM (2018) Seco-dendrobine-type alkaloids and bioactive phenolics from Dendrobium findlayanum. J Nat Prod 81(2):227–235

    Article  CAS  Google Scholar 

  14. Kaewamatawong R, Ruangrungsi N, Likhitwitayawuid KJ (2007) Chemical constituents of Polyalthia parviflora. J Nat Med 61(3):349–350

    Article  CAS  Google Scholar 

  15. Bi ZM, Wang ZT, Xu LS (2004) Chemical Constituents of Dendrobium moniliforme. Acta Bot Sin 46(1):124–126

    CAS  Google Scholar 

  16. Reyes-Ramirez A, Leyte-Lugo M, Figueroa M, Serrano-Alba T, Gonzalez-Andrade M, Mata R (2011) Synthesis, biological evaluation, and docking studies of gigantol analogs as calmodulin inhibitors. Eur J Med Chem 46(7):2699–2708

    Article  CAS  Google Scholar 

  17. Katerere DR, Gray AI, Nash RJ, Waigh RD (2012) Phytochemical and antimicrobial investigations of stilbenoids and flavonoids isolated from three species of Combretaceae. Fitoterapia 83(5):932–940

    Article  CAS  Google Scholar 

  18. Zhao WM, Ye QH, Dai JQ, Martin MT, Zhu JP (2003) Allo-aromadendrane- and picrotoxane-type sesquiterpenes from Dendrobium moniliforme. Planta Med 69(12):1136–1140

    Article  CAS  Google Scholar 

  19. Wang P, Chen X, Wang H, Huang SZ, Cai CH, Yuan JZ, Zhu GL, Xu XL, Mei WL, Dai HF (2019) Four new picrotoxane-type sesquiterpenes from Dendrobium nobile Lindl. Front Chem 7:812

    Article  CAS  Google Scholar 

  20. Punya J, Tachaleat A, Wattanachaisaereekul S, Haritakun R, Boonlarppradab C, Cheevadhanarak S (2013) Functional expression of a foreign gene in Aspergillus oryzae producing new pyrone compounds. Fungal Genet Biol 50(1):55–62

    Article  CAS  Google Scholar 

  21. Snatzke G (1968) Circular dichroism and optical rotatory dispersion–principles and application to the investigation of the stereochemistry of natural products. Angew Chem Int Ed 7(1):14–25

    Article  CAS  Google Scholar 

  22. Elvidge JA, Ralph PD (1966) Polyene acids. Part X. The conformation of hexenolactone and the configuration of the derived sorbic acid as indicated by proton magnetic resonance spectroscopy. J Chem Soc B:243–244

    Google Scholar 

  23. Mori K (1976) Absolute configuration of (−)-massoilactone as confirmed by a synthesis of its (S)-(+)-isomer. Agric Biol Chem 40(8):1617–1619

    CAS  Google Scholar 

  24. Sarigaputi C, Sommit D, Teerawatananond T, Pudhom K (2014) Weakly anti-inflammatory limonoids from the seeds of Xylocarpus rumphii. J Nat Prod 77(9):2037–2043

    Article  CAS  Google Scholar 

  25. Lu Y, Shipton F, Khoo TJ, Wiart C (2014) Antioxidant activity determination of citronellal and crude extracts of Cymbopogon citratus by 3 different methods. Pharmacol Pharm 05:395–400

    Article  CAS  Google Scholar 

  26. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37(4):277–285

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endownment Fund), the Research Assistantship Fund, Faculty of Science, Chulalongkorn University, and the Center of Excellence on Petrochemical and Materials Technology. T.A. was grateful to the Ratchadapisek Sompoch Endowment Fund (CU-GR_63_161_23_27), Chulalongkorn University for the partial support of X-ray diffraction facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khanitha Pudhom.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khumploy, P., Raksat, A., Choodej, S. et al. Picrotoxane sesquiterpene and α-pyrone derivative from Dendrobium signatum and their free radical scavenging potency. J Nat Med 75, 967–974 (2021). https://doi.org/10.1007/s11418-021-01547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01547-5

Keywords

Navigation