Skip to main content
Log in

Synthesis and photovoltaic properties of low bandgap dimeric perylene diimide based non-fullerene acceptors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Non-fullerene organic acceptors have attracted increasing attention in recent years. One of the challenges in the synthesis of non-fullerene organic acceptors is to tune the absorption spectrum and molecular frontier orbitals, affording low bandgap molecules with improved absorption of the near-infrared solar photons. In this paper, we present the synthesis, optoelectronic and photovoltaic properties of a series of dimeric perylene diimide (PDI) based non-fullerene acceptors. These PDI dimers are bridged by oligothiophene (T) from 1T to 6T. With the increase of the oligothienyl size, the highest occupied molecular orbital (HOMO) energy is raised from −5.65 to −5.10 eV, while that of the lowest unoccupied molecular orbit (LUMO) is kept constant at −3.84 eV, affording narrow bandgap from 1.81 to 1.26 eV. The absorption from the oligothiophene occurs between 350 and 500 nm, which is complementary to that from its bridged PDI units, leading to a wide spectral coverage from 350 to 850 nm. The optimal dihedral angle between the bridged two perylene planes is dependent on the oligothienyl size, varying from 5° to 30°. The solubility of the dimers depends on the oligothienyl size and can be tuned by the alkyl chains on the bridged thienyl units. The possible applications as the solution-processable non-fullerene organic acceptor is primarily studied using commercial P3HT as the blend donor. The photovoltaic results indicate that 1T, 4T and 6T all yield a higher efficiency of ∼1.2%, whereas 2T, 3T and 5T all give a lower efficiency of <0.5%. The difference in the cell performance is related with the tradeoff between the differences of absorption, HOMO level and film-morphology between these dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang CW. Appl Phys Lett, 1986, 48: 183–185

    Article  CAS  Google Scholar 

  2. Brunetti FG, Gong X, Tong M, Heeger AJ, Wudl F. Angew Chem Int Ed, 2010, 49: 532–536

    Article  CAS  Google Scholar 

  3. Holcombe TW, Norton JE, Rivnay J, Woo CH, Goris L, Piliego C, Griffini G, Sellinger A, Bredas JL, Salleo A, Fréchet JM. J Am Chem Soc, 2011, 133: 12106–12114

    Article  CAS  Google Scholar 

  4. Bloking JT, Han X, Higgs AT, Krastrop JP, Pandey L, Norton JE, Risko C, Chen CE, Brédas JL, Mc Gehee MD, Sellinger A. Chem Mater, 2011, 23: 5484–5490

    Article  CAS  Google Scholar 

  5. Ahmed E, Ren G, Kim FS, Hollenbeck EC, Jenekhe SA. Chem Mater, 2011, 23: 4563–4577

    Article  CAS  Google Scholar 

  6. Ren G, Ahmed E, Jenekhe SA. Adv Energy Mater, 2011, 1: 946–953

    Article  CAS  Google Scholar 

  7. Wang X, Huang JH, Niu ZX, Sun YX, Zhan CL. Tetrahedron, 2014, 70: 4726–4731

    Article  CAS  Google Scholar 

  8. Fernando R, Mao Z, Muller E, Ruan F, Sauvé G. J Phys Chem C, 2014, 118: 3433–3442

    Article  CAS  Google Scholar 

  9. Zhou TL, Jia T, Kang BN, Li FH, Fahlman M, Wang Y. Adv Energy Mater, 2011, 1: 431–439

    Article  CAS  Google Scholar 

  10. Zhou Y, Ding L, Shi K, Dai YZ, Ai N, Wang J, Pei J. Adv Mater, 2012, 24: 957–961

    Article  CAS  Google Scholar 

  11. Zhou Y, Dai YZ, Zheng YQ, Wang XY, Wang JY, Pei J. Chem Commun, 2013, 49: 5802–5804

    Article  CAS  Google Scholar 

  12. Pho TV, Toma FM, Chabinyc ML, Wudl F. Angew Chem Int Ed, 2013, 52: 1446–1451

    Article  CAS  Google Scholar 

  13. Lin YZ, Li YF, Zhan XW. Adv Energy Mater, 2013, 3: 724–728

    Article  CAS  Google Scholar 

  14. Shu Y, Lim YF, Li Z, Purushothaman B, Hallani R, Kim JE, Parkin SR, Malliaras GG, Anthony JE. Chem Sci, 2011, 2: 363–368

    Article  CAS  Google Scholar 

  15. Winzenberg KN, Kemppinen P, Scholes FH, Collis GE, Shu Y, Singh TB, Bilic A, Forsythb CM, Watkins SE. Chem Commun, 2013, 49: 6307–6309

    Article  CAS  Google Scholar 

  16. Zhan CL, Li ADQ. Curr Org Chem, 2011, 15: 1314–1339

    Article  CAS  Google Scholar 

  17. Schmidt R, Oh JH, Sun YS, Deppisch M, Krause AM, Radacki K, Braunschweig H, Könemann M, Erk P, Bao ZN, Würthner F. J Am Chem Soc, 2009, 131: 6215–6228

    Article  CAS  Google Scholar 

  18. Zhao Y, Guo YL, Liu YQ. Adv Mater, 2013, 25: 5372–5391

    Article  CAS  Google Scholar 

  19. Würthner F. Chem Commun, 2004: 1564–1579

    Google Scholar 

  20. Rajaram S, Armstrong PB, Kim BJ, Fréchet JMJ. Chem Mater, 2009, 21: 1775–1777

    Article  CAS  Google Scholar 

  21. Lu ZH, Zhang X, Zhan CL, Jiang B, Zhang XL, Chen LL, Yao JN. Phys Chem Chem Phys, 2013, 15: 11375–11385

    Article  CAS  Google Scholar 

  22. Zhang X, Lu ZH, Ye L, Zhan CL, Hou JH, Zhang SQ, Jiang B, Zhao Y, Huang JH, Zhang SL, Liu Y, Shi Q, Liu YQ, Yao JN. Adv Mater, 2013, 25: 5791–5797

    Article  CAS  Google Scholar 

  23. Jiang B, Zhang X, Zhan CL, Lu ZH, Huang JH, Ding XL, He SG, Yao JN. Polym Chem, 2013, 4: 4631–4638

    Article  CAS  Google Scholar 

  24. Yan QF, Zhou Y, Zheng YQ, Pei J, Zhao DH. Chem Sci, 2013, 4: 4389–4394

    Article  CAS  Google Scholar 

  25. Jiang W, Ye L, Li XG, Xiao CY, Tan F, Zhao WC, Hou JH, Wang ZH. Chem Commun, 2014, 50: 1024–1026

    Article  CAS  Google Scholar 

  26. Shivanna R, Shoaee S, Dimitrov S, Kandappa SK, Rajaram S, Durrant JR, Narayan KS. Energy Environ Sci, 2014, 7: 435–441

    Article  CAS  Google Scholar 

  27. Lin YZ, Wang JY, Dai SX, Li YF, Zhu DB, Zhan XW. Adv Energy Mater, 2014, 4: 1400420

    Google Scholar 

  28. Zhang X, Yao JN, Zhan CL. Chem Commun, 2015, 51: 1058–1061

    Article  CAS  Google Scholar 

  29. Lin YZ, Wang YF, Wang JY, Hou JH, Li YF, Zhu DB, Zhan XW. Adv Mater, 2014, 26: 5137–5142

    Article  CAS  Google Scholar 

  30. Zhang X, Jiang B, Zhang SQ, Hou JH, Yao JN, Zhan CL. Proc SPIE, 2014, 9184: 91840C

    Article  Google Scholar 

  31. Sharenko A, Proctor CM, van der Poll TS, Henson ZB, Nguyen TQ, Bazan GC. Adv Mater, 2013, 25: 4403–4406

    Article  CAS  Google Scholar 

  32. Ye TL, Singh R, Butt HJ, Floudas G, Keivanidis PE. ACS Appl Mater Interfaces, 2013, 5: 11844–11857

    Article  CAS  Google Scholar 

  33. Singh R, Aluicio-Sarduy E, Kan Z, Ye TL, MacKenzie RCI, Keivanidis PE. J Mater Chem A, 2014, 2: 14348–14353

    Article  CAS  Google Scholar 

  34. Zhang XL, Jiang B, Zhang X, Tang AL, Huang JH, Zhan CL, Yao JN. J Phys Chem C, 2014, 118: 24212–24220

    Article  CAS  Google Scholar 

  35. Lu ZH, Jiang B, Zhang X, Tang AL, Chen LL, Zhan CL, Yao JN. Chem Mater, 2014, 26: 2907–2914

    Article  CAS  Google Scholar 

  36. Zang Y, Li CZ, Chueh CC, Williams ST, Jiang W, Wang ZH, Yu JS, Jen AKY. Adv Mater, 2014, 26: 5708–5714

    Article  CAS  Google Scholar 

  37. Zhong Y, Trinh MT, Chen RS, Wang W, Khlyabich PP, Kumar B, Xu QZ, Nam CY, Sfeir MY, Black C, Steigerwald ML, Loo YL, Xiao SX, Ng F, Zhu XY, Nuckolls C. J Am Chem Soc, 2014, 136: 15215–15221

    Article  CAS  Google Scholar 

  38. Zhang X, Zhan CL, Yao JN. Chem Mater, 2015, 27: 166–173

    Article  CAS  Google Scholar 

  39. Zhao JB, Li YK, Lin HR, Liu YH, Jiang K, Mu C, Ma TX, Lai JYL, Yan H. Energy Environ Sci, 2015, 8: 520–525

    Article  CAS  Google Scholar 

  40. Lin YZ, Wang JY, Zhang ZG, Bai HT, Li YF, Zhu DB, Zhan XW. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  Google Scholar 

  41. Tan ZA, Zhang WQ, Zhang ZG, Qian DP, Huang Y, Hou JH, Li YF. Adv Mater, 2012, 24: 1476–1481

    Article  CAS  Google Scholar 

  42. An ZS, Yu JS, Jones SC, Barlow S, Yoo S, Domercq B, Prins P, Siebbeles LDA, Kippelen B, Marder SR. Adv Mater, 2005, 17: 2580–2583

    Article  CAS  Google Scholar 

  43. Zhang X, Pang SF, Zhang ZG, Ding XL, Zhang SL, He SG, Zhan CL. Tetrahedron Lett, 2012, 53: 1094–1097

    Article  CAS  Google Scholar 

  44. Zhang X, Zhan CL, Zhang XL, Yao JN. Tetrahedron, 2013, 69: 8155–8160

    Article  CAS  Google Scholar 

  45. Li YF. Sci China Chem, 2015, 58: 188

    Article  CAS  Google Scholar 

  46. Wu HB. Sci China Chem, 2015, 58: 189

    Article  CAS  Google Scholar 

  47. Huang F. Sci China Chem, 2015, 58: 190

    Article  CAS  Google Scholar 

  48. Li YF. Sci China Chem, 2015, 58: 191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanlang Zhan.

Additional information

Citation: Zhang X, Yao JN, Zhan CL. Synthesis and photovoltaic properties of low bandgap dimeric perylene diimide based non-fullerene acceptors. Sci China Chem, doi: 10.1007/s11426-015-5485-8

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yao, J. & Zhan, C. Synthesis and photovoltaic properties of low bandgap dimeric perylene diimide based non-fullerene acceptors. Sci. China Chem. 59, 209–217 (2016). https://doi.org/10.1007/s11426-015-5485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5485-8

Keywords

Navigation